Index

Note: Page numbers followed by f indicate figures, and t indicate tables.

A

Active-clamp flyback converter 355, 358f
Active-clamp resonant DC link inverter 373–374, 373f
Active filters 
hybrid filters 
configuration 1366–1368, 1368f
experimental setup 1372, 1373f
passive filter quality factor 1370–1371, 1371f
power system equivalent impedance 1371, 1371f
principles of operation 1368–1370, 1368–1370f
tuned factor 1370–1372, 1372f
nonlinear load 1342
power quality problems 1343, 1343t
predictive control 
block diagram 1372–1374, 1374f
cost function 1374
current reference generator 1374–1375, 1375f
dc voltage converter 1375
discrete-time model 1374
equivalent circuit 1372, 1374f
performance evaluation 1375–1376, 1376–1377f
PWM-VSI 1342
series filters 
coupling transformers 1360
experimental setup 1366, 1367f
gating signals 1365–1366, 1366f
implementation 1360f, 1366, 1366f
Park transformation 1364
passive filter 1358, 1358f, 1361–1362, 1361–1362f
principles of operation 1358–1359f, 1359
protection requirements 1362–1363, 1362–1364f
PWM voltage-source inverter 1359–1360, 1360f
reference signals 1364–1365, 1365f
secondary ripple filter 1360–1361, 1360–1361f
structure of 1358–1359, 1358f
voltage harmonics 1342–1343, 1342f
voltage sags and swells 1357–1358, 1358f
shunt filters 
block diagram 1344, 1347f
compensation characteristics 1343, 1343f
configuration 1343, 1344f
control loop design 1353f, 1355–1356, 1356f
current and voltage waveforms 1344, 1346f
current harmonics 1342–1343, 1342f
displacement power factor 1343, 1345f
hysteresis band 1353, 1353f
implementation 1343, 1344f
instantaneous reactive power theory 1345–1350, 1347–1348f
inverter switching mode 1354–1355, 1355–1356f, 1355t
LPF 1348, 1348f
NPC inverters 1343, 1346f
peak detection method 1351–1353, 1352f
periodical sampling method 1353, 1353f
reference currents 1345
standard specifications 1357
supply voltage distortion 1348–1349, 1349f
supply voltage unbalance 1349, 1350f
synchronous link reactor 1356–1357
synchronous reference frame algorithm 1350–1351, 1350–1351f
techniques 1352–1353, 1353t
triangular carrier method 1353–1354, 1353f
vector control technique 1354, 1354f
Actively neutral point clamped (ANPC) converter 874, 874f
Active power factor correctors 
boost corrector 536, 537f
buck-boost corrector 536, 537f
buck corrector 535–536, 536f
Cuk corrector 537, 538f
flyback corrector 538, 538f
forward converter 538–539, 539f
forward-flyback converter 538–539, 539f
Sepic corrector 537, 538f
single-stage quasi Z-source corrector 539–540, 540f
Zeta corrector 537, 538f
Active power filter 264, 265f
Active rectifier  See Synchronous rectifier (SR)
AC voltage controllers 417–418
applications 
ac switch with on/off control 448
fan/pump drives 447–448
four-quadrant ac voltage controller 447–448, 448f
induction motors, soft starting 448
integral cycle control 448
static ac switches 447
single-phase AC-AC voltage controller 
basic power circuit 418, 418f
bidirectional full-wave symmetrical control 418, 418f
with on/off control 421–422, 422f
phase-controlled single-phase AC voltage controller 419–421, 419–420f
unidirectional half-wave asymmetrical voltage control 418, 418f
three-phase AC-AC voltage controllers 
fully controlled three-phase three-wire AC voltage controller 424–425, 424f, 426f
phase-controlled three-phase AC voltage controllers 422–425, 423f
Adaptive network-based fuzzy control system (ANFIS) 
learning algorithm 1239f, 1240–1242, 1241–1242f
structure of 1239, 1239f
A/D conversion 1307–1308
Adhesive bond 161
Adjustable speed synchronous condenser (ASSC) 901, 902f
Air-conditioning (A/C) pump 1084, 1084t
Air-driven turbines based off-shore technologies 749–750, 749–750f
Alkaline fuel cell (AFC) 1097, 1097f
All-electric range (AER) 1032–1033, 1033f
Alternate phase opposition disposition PWM (APOD-PWM) method 406, 409f
Aluminum conductor steel-reinforced (ACSR) conductor 832
Ampere’s magnetic circuit law 576, 576f
Ancillary services 906–907, 907f
Antilock braking system (ABS) 1072, 1076–1077
Application-specific integrated circuits (ASICs) controller 286
Artificial neural networks (ANNs) 
advantages 1245
conventional function approximator 1246, 1246f
electric drives 1257–1259, 1258f
induction motor drives 
control scheme 1255–1257, 1257–1258f
flux and torque estimation 1248–1249
off-line trained configuration 1249, 1250f
on-line trained configuration 1249–1253
RWC algorithm 1255
speed estimation 1247–1248, 1248–1249f
SRE block 1254–1255
neural function approximator 1246–1247, 1246–1247f
power converters 1259–1260, 1259f
Asynchronous generator (AG) 1425, 1425f
Automobiles 
alternative machines 
axial-air-gap/axial-flux machine 1082–1083, 1082f
combined starter/alternator approach 1080
cylindrical wound rotor 1080, 1081f
induction machine 1080–1081
permanent-magnet synchronous machine 1080f, 1082
switched reluctance machine 1081–1082, 1081–1082f
automotive electric system 
dual-voltage architectures 1085–1086, 1085–1086f
future load 1083–1084, 1084t
higher fuel efficiency 1084
requirements 1083
voltage specifications 1084–1085, 1085t
EHPS system 1075
electric air conditioner 1074–1075
electric and environmental conditions 
electromagnetic compatibility 1068–1069, 1069–1070t
factors 1068, 1071–1072
static voltage ranges 1068, 1069t
temperature extremes 1071–1072, 1072t
electric vehicles 1086–1088
electromagnetic actuators 1074, 1074f
EPS system 1075
HID lamps 1072–1073, 1073f
Lundell alternator 
alternator output power vs. operating point 1078
permanent magnets 1079
simple electric model 1078, 1078f
structure and circuitry 1077, 1078f
switched-mode rectifier 1079–1080, 1080f
third-harmonic booster diodes 1079, 1079f
twin-rotor 1079
motor speed control 1075, 1075f
multiplexed load control 
conventional direct switching architecture 1068f, 1075, 1076f
point-of-load switching 1075–1076, 1076f
remote switching architecture 1075–1077, 1076f, 1077t
piezoelectric ultrasonic motors 1073–1074, 1074f
present-day automobiles 1067–1068, 1068f
PWM lighting system 1073
Auxiliary resonant commutated pole inverter (ARCPI) 371, 379–380, 381f
Average current control (ACM) strategy 546–547, 547f
Averaging 11

B

Backstepping control 
buck–boost converter 1215–1217, 1215–1216f
Lyapunov function 1213–1214
single phase dc-ac inverter 1217–1218, 1217–1218f
tracking error 1214
zero error 1213–1215
Base resistance-controlled thyristor (BRT) 71, 71f
Basic lightning impulse insulation level (BIL) 845
Battery electric vehicle (BEV) 1024
advantages 1029
architecture 1029, 1029f
coil design 
circular and rectangular shape 1119, 1119f
configuration 1118, 1119f
dual-pole coil 1119, 1119f
magnetic field shape 1119, 1120f
magnetic field shield 1120, 1120f
single-pole coil 1119, 1119f
structure of 1119, 1120f
use of core 1120, 1120f
disadvantage 1029
emission regulations 1029
fuel cell 1091–1092, 1096, 1103
ICE 1029
misalignments 1120, 1121f
static EV chargers 1118, 1118f
Betz’s law 742–743, 743f
Bidirectional buck converter 285
Bidirectional-controlled thyristor (BCT) 50
Bidirectional flyback converter 285, 285f
Bi-directional thyristors 73, 73–74f
Bipolar junction transistors (BJT) 24
buck-boost converter 31, 31f
chopper driver with DC motor 31, 31f
duty cycle 31
MRT 31
PSPICE model 32, 32t
BLDC machines  See Brushless DC (BLDC) machines
Boost converter 279–280, 280f
Boost inverter 295
Boost-type AC-DC power factor correction circuit 
drain-source voltage and current 365, 367f
hard-switched circuit 361, 365f
idealized waveforms 361, 366f
operating modes 361–365, 366f
soft switching 361, 365f
Brushless DC (BLDC) machines 743–744, 744f
Brushless DC motor (BDCM) 793, 794f See also Permanent-magnet alternating current (PMAC) motors
back emf 976, 976f
rotor configuration 975, 975f
sensorless operation 977
trapezoidal-wave motor 970f, 976–977, 976f
Buck-boost converter 
basic converter 280–281, 281f
flyback converter 281–282, 281f
Buck converter  See Step-down DC-DC converter

C

California Air Resources Board (CARB) 1029
California Fuel Cell Partnership (CaFCP) 1108
Capacitive power transfer (CPT) 712, 712f, 1117, 1117f
Capacitor charging power supply (CCPS) 633–634, 634f
Carrier-based PWM 
experimental implementation 
DSP TMS320F2812 491
fifth-harmonic injection scheme 491, 493–494f
five-phase carrier-based PWM 491, 492f
SVPWM with large and medium vectors 491, 494–495f
fifth harmonic injection PWM 488
offset/triangular zero-sequence injection PWM 488–489, 489f
space-vector PWM 508
advantages 489–490
principle 489
for sinusoidal output 490–491, 490–491f
SPWM 488
with zero sequence signal 
modulation signals 486–487
principle of operation 486–487, 487f
PWM waveform generation 486–487, 487f
Carrier-based technique 289
Carrier level-shifted PWM (CLS-PWM) 406, 409f
Carrier phase-shifted PWM (CPS-PWM) 406, 407–408f
Cascaded H-bridges 386
advantages 387
disadvantages 388
output phase voltage waveform 386, 387f
single-phase structure 386, 386f
three-phase wye-connection structure 387, 387f
with transformers 388, 388f
Cascaded topology 
high-voltage pulse transformer 
advantage 622
autotransformer-type cascade layout 621, 621f
galvanic isolated power supplies 621
modular pulsed generator simplified layout 622, 623f
principles 622
secondary windings in series 621, 621f
series-connected secondary winding transformers 621, 622f
series-stacked modulator topology 620, 620f
Central plant inverter 804, 804f
Class-D inverter 718, 718f
Class-E inverter 718–719, 719f
Classical thyristor 91f, 92
Coal-fired power stations  See Thermoelectric power plants
Color rendering index (CRI) 689
Common mode converter 775, 776f
Common-mode (CM) filters 1382, 1382f
Commutation number 515–516
Conductor temperature model (CTM) 838
Connaught Bridge Power Station 831f
Constant-frequency multiresonant (CF-MR) switch 352–355, 354f
Constant frequency peak current control 549, 549–550f
Constant resistance region 33
Constant voltage-to-frequency ratio strategy (CVFRS) 1268–1269, 1272f
Continuous conduction mode (CCM) 277, 553t
AC-DC PFC converter 544, 546f
ACM strategy 546–547, 547f
charge control 549–550, 551f
constant frequency peak current control 549, 549–550f
control system 219, 220f
current waveform 541, 545f
dc voltage control loop dynamic behavior 220, 221f
high-power applications 544
hysteresis control 549, 551f
I2 average current mode control 547–548, 547f
inductor current behavior 219, 220f
input current and voltage 219–220, 220f
multiloop controls 544
nonlinear-carrier control 550–551, 551f
single-phase boost rectifier 
control system 219, 220f
dc voltage control loop dynamic behavior 220, 221f
inductor current behavior 219, 220f
input current and voltage 219–220, 220f
variable frequency peak current control 548–549, 548f
voltage control 
capacitor voltage control 551–552, 552f
inductor voltage control 552, 552f
input circuit and phasor diagram 551, 552f
Continuous control set MPC (CCS-MPC) 1326–1327
Continuously variable speed systems 
electrical/power electronics control 817, 817f
electrical variable speed systems 816
electric/mechanical control 816
mechanical control 816
Controllable displacement factor frequency changer (CDFFC) 436–437
Converter-inverter-brake (CIB) module 163, 165f
Convertible static converter (CSC) 906
Correlated color temperature (CCT) 689
Coupled magnetic resonance system (CMRS) 1120, 1120f
Critical conduction mode (CRM) techniques 
advantages 561–563
current waveform 541, 546f
diode reverse-recovery problem 543
disadvantages 561–563
hysteretic control 561
in low-power applications 561–563
VOT control 561–563
Ćuk converter 282, 282f
Current-based maximum power point tracker (CMPPT) 772
Current-controlled VSI (CCVSI) 
AC line voltage regulation 803–804
bidirectional power flow 800–801
CCVSI-based DGS 802–803
equivalent circuit 802, 802f
grid current 803
Kalbarri power-conditioning system 803, 803f
load reactive power 803
phasor diagram 802–803, 802f
power flow control 801
Current-fed parallel resonant inverters 
equivalent circuit 698, 698f
input current 698
operating waveforms 698, 698f
output voltage 698–699, 699f
parallel resonant circuit 700, 700f
phase angle 699
resonant tank natural frequency 700
self-oscillating current-fed push-pull electronic ballast 700, 700f
total harmonic distortion 699, 699f
voltage stress 699
Current-fed resonant ballasts 693–694, 693f
Current model 1250
Current-source inverters (CSIs) 289
feedback techniques 331–332, 331f
motor control 77, 79f
regenerative operating mode 336, 336f
single-phase inverters 
ideal waveforms 291–293, 295f
operation rules 291
output filter 293, 296f
switch states 291, 294t
topology 291, 294f
three-phase inverters 
carrier-based PWM techniques 310–313, 311–313f
DC link voltage 316–317, 318f
selective harmonic elimination 314, 315–316f
space-vector-based modulating techniques 314–316
square-wave operation 313–314, 314f
switch states 310, 310t
topology 309, 310f
Current total harmonic distortion (THDi532
Cycloconverters 
applications 
ac commutatorless motor 448–449
constant frequency power supplies 449
cycloconverter-fed induction motors 449
cycloconverter-fed synchronous motors 448–449
frequency changers 425–427, 448
interties between AC power systems 449
ring motor 448–449
static VAR generation 449
variable speed AC drives 448
VSCF generation 449
basic principle 425–427
control scheme 
control circuit block diagram 433, 434f
converter group selection and blanking circuit 434
cosine modulating voltages 432–433, 433f
firing signals 432–433, 433f
logic and trigger circuit 434
natural sampling 434–435
P-converter and N-converter output voltages 433, 433f
reference source 433–434, 434f
regular sampling 434–435
six-pulse noncirculating current cycloconverter-fed synchronous motor drive 435
synchronizing circuit 433
forced commutated cycloconverter 436–437, 437f See also Matrix converters (MC))
grid-controlled mercury-arc rectifiers 425–427
harmonics and input current waveform 435–436
input displacement/power factor 436
naturally commutated cycloconverter 427, 436–437
power quality degradation 436
simulation analysis 436
single-phase to single-phase cycloconverter 427–429, 427–428f
source impedance effect 436
three-phase six-pulse and twelve-pulse cycloconverter 432, 432f
three-phase three-pulse cycloconverter 429–432, 429–431f
variable-speed constant-frequency systems 425–427
variable-voltage variable-frequency ac drives 425–427

D

Darlington-connected amplifier 662, 662f
DC–AC utility inverters 
HVDC transmission system 77, 78f
three-phase controlled rectifier 77, 77f
12-pulse converter 77, 78f
DC choppers 
PWM control 276
step-down chopper 276, 276–277f
step-up chopper 276–277, 277f
DC–DC converters 
applications 287–288
bidirectional converter 285, 285f
buck-boost converter 
basic converter 280–281, 281f
flyback converter 281–282, 281f
charge regulators 788, 788f
control principles 
ASICs controller 286
control-to-output transfer function 287
current-mode control 285–286, 286f
dynamic characteristics 286–287
hysteretic control 286
voltage-mode control 285, 286f
Ćuk converter 282, 282f
DC choppers 
PWM control 276
step-down chopper 276, 276–277f
step-up chopper 276–277, 277f
functions 275
hard-switching PWM converters 275–276
high-frequency electronic power processors 275
parasitic components 
capacitance and resistance, series connection 283
effects 284, 284f
efficiency 284
peak-to-peak ripple voltage 283–284
voltage ripple waveforms 283, 283f
resonant and soft-switching converters 275–276
step-down (buck) converter 
basic converter 277–278
transformer versions 278–279
step-up (boost) converter 279–280, 280f
synchronous converter 284–285, 285f
DC line-interactive UPS system 648, 648f
Depth of discharge (DOD) 787, 787f
Design for reliability (DfR) 
architecture 1429–1430, 1430f
cash flow 1430, 1431f
lifetime model 1432, 1435, 1435t
mission profile 
ambient temperature 1429, 1429f
cost and reliability performances 1426–1428
renewable energy 1426–1428
solar irradiance 1428–1429, 1429f
wind speed 1428, 1428f
Monte Carlo assessment 1432–1433, 1435–1436, 1436–1437f
potential failures 1430, 1431f
prediction process 1430, 1431f, 1432
PV systems 1426, 1427f, 1433, 1434f
results 1437, 1438f
system-level analysis 1433, 1436, 1437f
thermal loading interpretation 1432, 1434–1435, 1435f
unscheduled maintenance cost 1430, 1431f
utility-scale power plants 1423–1424, 1424f
wind systems 
configurations 1425, 1425f
grid-connected 1424, 1425f
3L-NPC BTB 1425–1426, 1426f
2L-VSC BTB 1425–1426, 1426f
types 1425
Diac 73
cross section 73, 73f
i-v plot 73, 73f
lighting control circuits 79, 80f
Diesel hybrid PV systems 786, 786f
Differential-mode (DM) filters 1382, 1382f
Digital PFC control technique (DPFC) 564
Digital signal processors (DSPs) 
active power filters 1349–1350
induction motors 
skew 1317
spatial orientation  See (Field-oriented control (FOC))
squirrel-cage induction motor 1317
three-phase stator windings 1317
PMAC motors 
algorithm 1312–1313, 1313f
back EMF 1309, 1309f
controller requirements 1311, 1312f
mathematical model 1309
motor-control system 1310–1311, 1310–1312f
torque generation 1309–1310, 1310f
PMSM 
controller requirements 1316, 1316f
control topology 1315–1316, 1315–1316f
mathematical model 1314–1315, 1314f
rotor reference frame 1315
Diode-clamped multilevel inverter 
advantages 389
application 389
disadvantages 389
three-phase six-level diode-clamped inverter 
line voltage waveform 389, 389f
structure 388–389, 388f
voltage levels and switch states 388–389, 389t
Direct-current (DC) motor drives 
characteristics 
damping factor 949
dynamic and steady-state responses 947
example 949
separately excited dc motors 947–948, 948f
series-excited dc motors 947–948, 948f
speed response 949
torque 947
undamped natural frequency 949
commutator brush 947
drive system 952–953, 952–953f
operational factors 953
PWM switching converter drive 950–952, 951–952f
thyristor converter 949–950, 949–951f
Direct-drive permanent-magnet linear generator-based buoy applications 750, 751f
Direct matrix converters (DMC) 459
Direct methanol fuel cell (DMFC) 1099
Direct multiphase matrix converters (DMMC) 508, 516
Direct switch matrix circuits 7
Direct torque control (DTC) technique 1042
Direct transfer function (DTF) approach 441
Discharge lamps 
breakdown phase 687, 688f
CCT 689
CRI 689
current and voltage waveforms 695, 695–696f
discharge pressure 688–689
discharge tube 687, 687f
electromagnetic ballast 690–691, 690f
electronic ballasts 
advantages 685
definition 685
general block diagram 691–692, 691f
high-power-factor ballasts 705–708
nonresonant ballasts 692–693, 693f
resonant ballasts 693–695
resonant inverters  See (Resonant inverters)
equivalent lamp resistance 696
equivalent resistance vs. power characteristic 697, 697f
estimated electric data 696–697, 696t
fluorescent lamps 689
gas discharge, voltage-current characteristics 687, 688f
high-pressure discharge lamps 688
high-pressure mercury vapor lamps 689
high-pressure sodium lamps 689
inductive ballast 697, 698f
integrating sphere 686, 687f
low-frequency electric data 696, 696t
low-pressure discharge lamps 688
low-pressure sodium lamps 689
luminous efficacy 686
luminous flux 686
Mader-Horn linear model 697, 697f
nocturnal vision 685
photopic curve 685, 686f
power factor 696
pressure values 688–689
scotopic curve 685, 686f
spectral energy distribution 685, 686f
SPICE-based programs 697, 697f
warm-up phase 688, 688f
Discontinuous conduction mode (DCM) 278, 559t
AC-DC power supply 
postregulator 559–560
preregulator 559–560, 560f
single-stage single-switch PFC 560, 562f
S4-PFC converter 560, 563f
two-switch single-stage PFC 560, 561f
active current waveform shaping principle 220–222
advantage 552–553
current waveform 541, 545f
low- to medium-level power application 544
operating principle with fixed switching frequency 220–222, 221–223f
operating principle with variable switching frequency 220–222, 221f
PFC capabilities 
boost converter 554–555, 554f
buck-boost converter 555–556, 555f
buck converter topology 553–554, 554f
Cuk converter 557, 557f
flyback converter 556, 556f
flyboost converter 558–559, 559f
forward converter 556–557, 556f
input characteristics 553–559
Sepic converter 557, 557f
Zeta converter 557–558, 558f
single-phase boost rectifier 
active current waveform shaping principle 220–222
operating principle with fixed switching frequency 220–222, 221–223f
operating principle with variable switching frequency 220–222, 221f
single-stage single-switch converter 542
Discretely variable speed systems 815
Discrete-time model 1328–1329, 1329f
Dissipative passive snubbers 339–340
Distributed generation system (DGS) 800–801, 801f
Double-conversion UPS  See On-line UPS system
Double-ended flyback regulator 672, 673f
Double-ended forward regulator 676, 676f
Double-sided cooling, power module 
using DBC structure 169
using press-pack structure 169, 169f
wire-bond-free packaging techniques 169
Doubly-fed induction generator (DFIG) 745–746, 745f, 809, 810f, 1425, 1425f
Dual-gate emitter switched thyristor (DG-EST) 68
Duty ratio 11

E

Edge-termination (ET) techniques 130
Electrically driven vehicles (EDVs) 1091–1092
Electric energy generation technologies 
fuel cell power plants 758–759
geothermal energy systems 754–757
hydroelectric power plant 734
nuclear power plants 757
ocean energy harvesting 747–754
solar energy conversion and photo-voltaic systems 734–741
thermoelectric power plants 732–734
wind turbines 741–747
Electric motor 
DC motor 1041
design 1041
induction motor 1042–1043
PM motor 1043
SR motor 1043–1044, 1043t
torque-speed characteristic 1041, 1042f
Electric power steering (EPS) system 1075
Electric propulsion system (EPS) 
classification 1041, 1042f
conventional ICE-based vehicle 1026
electric motor  See (Electric motor)
ESS, vehicular electrification  See (Energy storage system (ESS))
functional block diagram 1036, 1036f
issues 1036
reversible process 1035–1036
Electric variable speed drive (VSD) system 
actuators 932–933
advantages 914–915
applications 913, 919, 920t, 940t
deep mining 940, 941f
industrial processes 940–941
marine industry 918, 941–943, 943f
metal industry 918–919, 941
mining industry 917
offshore industry 941–942
process industry 918
brushless DC motor drive 931
classifications 919, 920t, 927f
current source inverter 
forced commutated inverter 923
load commutated inverter 923
DC motor drives 927–928, 928f
DC static converter 921, 922t
direct AC/AC converters 
cyclo-converter 921, 922t
matrix-converter 921–923
disadvantages 915–916, 917t
historical review 914, 914t
induction motor drive 
slip-ring induction motor 929–930
squirrel cage induction motor 928–929
integrated motors 933
integrated power system 942, 942f
linear motor drive 943–944
linear motors 932
load profiles 924–925, 925t
motor drive duty 
duty cycle 925, 926t
dynamic braking energy 927
mean output 925
multiquadrant operation 926–927, 927f
thermal cycling 925–926
power devices 920–921, 921t
schematic diagram 913, 914f
SEPDIS 942, 943f
shaft-generators 942–943, 943f
slip power recovery 922t, 923
specifications 919, 919t
stepper motors 932, 932t
switched reluctance motor drive 931–932
synchronous motor drives 930–931
Electric vehicles (EVs) 
automobiles 1086–1088
CPT 1117, 1117f
Electric vehicular technology (EVT) 
advancements 1024–1025, 1025f
benefits 1026–1027, 1027t
BEV 1029, 1029f
advantages 1029
architecture 1029, 1029f
disadvantage 1029
emission regulations 1029
ICE 1029
challenges 1026
control algorithms and power management 1060–1062, 1061f, 1062t
ECU 1060, 1061f
energy system 1025
EPS 1026
classification 1041, 1042f
conventional ICE-based vehicle 1026
electric motor  See (Electric motor)
ESS, vehicular electrification  See (Energy storage system (ESS))
functional block diagram 1036, 1036f
issues 1036
reversible process 1035–1036
factors 1026–1027
advantages 1034
battery-operated vehicles 1034
characteristics 1034–1035, 1035t
disadvantages 1034–1035
hydrogen-rich fuels 1034, 1034f
regenerative braking 1034
HEV 
advantages 1029
complex hybrid configuration 1032, 1033f
energy sources 1029
parallel hybrid configuration 1031, 1031f
power-flow diagram 1029–1030, 1030f
series hybrid 1030–1031, 1030f
series-parallel 1032, 1032f
power demand 1026
rapid acceleration 1025–1026
semiconductor devices 1026
size vs. distance 1026–1027, 1027f
vehicular electrification 
classification 1024
fuel economy improvements 1023–1024
global CO2 emissions 1023, 1024f
tailpipe emission 1023–1024
USA 1023
Electrohydraulic power steering (EHPS) system 1075
Electromagnetic interference (EMI) 
AC drive system 1382, 1382f
average detector 1384–1385
block diagram 1384, 1384f
broadband unit 1384
choke coils 1386, 1386f
CM and DM filters 1387, 1389f
common-mode voltage canceller 1390, 1391f
current-related interference 1382–1384
dB system 1384
electromagnetic disturbances 1381–1382
fast ON-OFF and OFF-ON state 1382
feedthrough capacitors 1386, 1386–1387f
frequency graph 1388, 1389f
frequency spectrum 1382, 1383f
high-frequency equivalent circuits 1388–1390, 1390f
insertion loss 1387–1388, 1389f
LISN 1385, 1385f
low-pass filters 1385, 1387, 1387f
MFC capacitors 1386
noise suppression 1382f, 1393–1394, 1394f
output current 1382, 1383f
peak detectors 1384–1385
power line filter 1390, 1390f
quasi-peak detectors 1384–1385
random pulse width modulation 
insertion loss vs. frequency graph 1389f, 1390
nonrandom technique 1391–1392, 1391f
switching period 1390–1391
VD-RPWM 1392–1393, 1392f
RBW 1071, 1071f
RF aspects 1384
single-/multistage low-pass filters 1071
snubbers 1386
specifications 1070–1071, 1070–1071f
spectrum analyzers 1385
standards 1394–1396, 1395f
terminal-pair transfer impedance 1384
three-wire supply and load ac lines 1382
transient disturbances 1071
T-type filter 1387, 1388f
two-wire system 1387, 1388f
voltage disturbances 1381
voltage probes 1384
Electromagnetic transient program (EMTP) 882–883, 883f
Electronic ballasts 
advantages 685
applications 
automotive lighting 709
emergency lighting 708, 709f
home and industrial lighting 709
microprocessor-based lighting 709, 709f
portable lighting 708
definition 685
general block diagram 691–692, 691f
high-power-factor ballasts 
active solutions 707–708, 707–708f
circuit diagram 705–706, 706f
harmonic limiting standards 706, 706t
passive solutions 706, 707f
nonresonant ballasts 692–693, 693f
resonant ballasts 693–695
Electronic control units (ECUs) 1060, 1061f, 1084
Embedded converters 7
Emitter switched thyristor (EST) 68
Emitter turn-off thyristor (ETO) 604, 604f
Energy management strategy (EMS) 
adaptive control technique 1108
conventional linear PI controller 1108
frequency decoupling 1107–1108
hybrid systems 1106
intelligence-based energy management 1106–1107
load sharing and control algorithm 1106
optimization 1107
robust control methods 1108
Energy sources 
biomass 732
coal 726, 730
energy consumption, percentage share 725–726, 726f
energy demand 729
energy production rates 729, 729f
fossil fuels 726
geothermal energy 731
in human activity 725
hydroelectric power 730
hydrogen 731
natural gas 730
nuclear power 730
ocean 731
oil 726, 730
solar 730
total energy consumption 725, 726t
US nationwide energy consumption sectors 726–727, 727–728t
US power generation 727, 728t
wind 730
Energy storage system (ESS) 1101, 1103
active configuration 1050, 1051f
cascaded configuration 1051, 1051f
fuel-cell technology 1038–1039, 1040f
HES 1041, 1041t
multiple input configuration 1052–1054, 1052–1054f, 1054t
parallel configuration 1051–1052, 1052f
passive configuration 1050, 1050f
power flow 1049–1050
source and onboard energy storage devices 1036–1037
specific power vs. specific energy 1036–1037, 1037f
ultracapacitor 1038, 1040t, 1040f
Equivalent series resistance (ESR) 283
Eutectic bond 160
Extended Kalman filter (EKF) 1226–1227
Extended-period quasi-resonant (EP-QR) converters 
boost-type AC-DC power factor correction circuit 
drain-source voltage and current 365, 367f
hard-switched circuit 361, 365f
idealized waveforms 361, 366f
operating modes 361–365, 366f
soft switching 361, 365f
design procedure 365–368
soft-switched DC-DC flyback converter 368, 369f
ZCS bidirectional flyback DC-DC converter 368, 369f

F

Faraday’s magnetic circuit law 575–576, 575–576f
Federal Communications Commission (FCC) 1394, 1395f
Ferroresonant standby UPS system 642–643, 643f
Field-controlled thyristor (FCTh) 50, 72, 72f
Field effect transistors (FETs) 10
Field-oriented control (FOC) 
AC induction machines 
current injection 1412–1413
differentiator function 1415–1416
indirect vector control 1411f, 1414–1415, 1414–1415f
results 1416, 1417f
transformation matrices 1414
base values 1320, 1320f
block diagram 1319f, 1320
controller requirements 1319, 1320f
current model 1322, 1323f
genetic algorithm 1042, 1268–1269
high-performance applications 1318
MMFs 1318
Park transformations 1319, 1319f
per-unit model 1320, 1320f
PI regulator 1308, 1308f
rotor flux field-orientation condition 1318
software organization 1320, 1320f
speed estimation 
high-speed region 1321, 1321f
low-speed region 1321–1322, 1322f
vector-control algorithm 1317–1319, 1319f
Field-oriented control strategy (FOCS) 1268–1269, 1272f
Filtering systems, rectifier circuits 
capacitor-input dc filters 189–190
full-wave rectifier with 192, 192f
inrush current 193
voltage and current waveforms 192, 193f
inductor-input dc filters 189–190
circuit diagram 190, 190f
critical inductance 190
full-wave rectifier with inductor-input dc filter 190, 190f
harmonics, input current 191–192, 192t, 192f
for ripple factor 190–191
voltage and current waveforms 190, 191f
Finite control set MPC (FCS-MPC) 1326–1327
Finite element numerical methods 1447–1448, 1447f
Five-phase controlled full wave bridge rectifier 
basic power circuit 467, 467f
displacement factor 469
harmonics 468–469
input phase current 468
power factor 469
rms output voltage 468
switch average current 469
thyristor firing instants and output voltage 467, 467t
total harmonic distortion (THD) 468–469
waveforms 467–468, 467t
Five phase uncontrolled full wave bridge rectifier 
average diode current 466
circuit diagram 464, 464f
harmonics profile, output voltage 466f
input phase current 466–467
phase voltages 465, 465f
phasor diagrams 464, 464–465f
Five-phase voltage-source inverter 
DSP implementation 484–486
hardware implementation 
control circuit, block diagram 483, 484f
gate driver circuit 483, 485f
180 degrees conduction mode 483–484, 485–487f, 486
inverting Schmitt trigger and wave-shaping circuit 483, 485f
noninverting Schmitt trigger and wave-shaping circuit 483, 484f
phase-shifting circuit (PSC) 483, 484f
power switch modules 483
model transformation, decoupling matrix 483, 483f
nonadjacent voltages 477
output phase-to-neutral voltages 477
power circuit topology 477, 478f
pulse width modulation mode of operation 482, 482t, 482f
space vector theory 477
square wave mode of operation 
adjacent line-to-line voltages 481, 481f
gating signals 478, 478f
harmonic spectrum of inverter phase voltage 480, 480f
180 degrees conduction mode 477–482
leg voltages 478
nonadjacent line-to-line voltages 481–482, 481t, 481f
phase-to-neutral voltages 479–480, 479f
total harmonic distortion 480, 482
total harmonic rms voltage 480, 482
Fixed-frequency PWM controllers 
average current-mode controlled flyback regulator 683, 683f
current-mode controlled flyback regulator 682f, 683
peak current-mode control 683
voltage-mode controlled forward regulator 681, 681f
Fixed-pitch wind turbines 808–809
Fixed speed wind turbines 
blade pitch control 813, 814f
Cp/λ curves 813, 813f
drivetrain model 814, 814f
pitch control 813
rotational speed 813
stiff power train dynamics 813
variable-pitch control 813
Flexible AC transmission systems (FACTS) 
ideal series compensator 
circuit diagram 887, 887f
compensation voltage 887, 889
equivalent impedance 887
generic series compensator 888–889, 888–889f
phasor diagram 888, 888f
power transfer characteristics 889, 889f
reactive power 887–888
stability margin characteristics 889–890, 890f
ideal shunt compensator 
circuit diagram 886, 886f
operating principles 886
phasor diagram 886, 886–887f
self-commutated switches 
adjustable speed synchronous condenser 901, 902f
convertible static converter 906
gate-controlled series capacitor 903–904, 903f
interline power flow controller 906, 906f
six-pulse VSC two-level var compensator 894, 894f
three-level var compensator 894, 894f
thyristor-based controllers 
static var compensator 891–892, 892f
thyristor-controlled phase-angle regulator 893–894, 893–894f
thyristor-controlled reactor 890, 891f
thyristor-controlled series capacitor 892–893, 892–893f
thyristor-switched capacitor 890–891, 891f
thyristor-switched series capacitor 892, 892f
Fluorescent lamps 689
Flyback converter 637, 637f
Flying-capacitor six-level inverter 
advantages 391
disadvantages 391
six-level inverter 
three-phase structure 389, 390f
voltage levels and switch states 389, 390t
Flywheel energy storage system (FESS) 1040
Force-commutated three-phase controlled rectifiers 
active power filter 264, 265f
advantages 264
basic topologies 252–253, 253f
characteristics 252–253
dc link voltage control 
voltage-source current-controlled PWM rectifier 257–259
voltage-source load-controlled PWM rectifier 263–264
voltage-source voltage-controlled PWM rectifier 259–263
frequency link systems 265, 266f
high-power applications 
amplitude modulation, “H” bridges 266, 270f
frequency link with force-commutated converters and sinusoidal voltage modulation 266, 269f
“H” modulator 266, 268f
series connection system 266, 268f
total current of four converters in series 266, 268f
voltage and current waveforms with 12 converters 266, 269f
voltage waveforms with “H” bridges in series 266, 270f
machine drives 264
electric bus system with regenerative braking and battery charger 267, 271f
frequency converter with force-commutated converters 266–267, 271f
PWM phase-to-phase and phase-to-neutral voltages 256, 257f
using multilevel topologies 
diode-clamped topology 270–273, 271–272f
three-level configuration 269–270, 271f
twenty-seven-level rectifier 270–273, 272–273f
variable speed power generation 
variable-speed constant-frequency wind generator 267–269, 271f
wound rotor induction generators 269
voltage source rectifier 
current waveforms 254–255, 256f
DC link voltage condition 255–256, 256f
four-quadrant operation 254–255, 255f
with harmonic elimination capability 264, 265f
operation principle 253, 254f
PWM pattern 253–254
using three-level converter 269–270, 271f
Forced commutated cycloconverters 417–418, 463–464
input displacement factor (IDF) 436–437
matrix converter circuit with input filter and clamp circuit 437, 437f
restricted frequency changer 436–437
slow switching frequency changer (SSFC) 436–437
unrestricted frequency changer (UFC) 436–437
Form factor (FF) 180
Forward-bias safe operating area (FBSOA) 27, 27f
Forward-conducting reverse-blocking restricted switch 10
Forward converter 278–279, 278f
Freewheeling 21, 22–23f
Frequency link systems 
force-commutated three-phase controlled rectifiers 265, 266f
line-commutated controlled rectifiers 264, 265f
Fringing effect 584–585, 584–585f
Fuel cell (FC) 
adoption 1096
advantages 1096
AFCs 1097, 1097f
automotive applications 
features 1103
hybridization 1104–1105, 1104–1106f
ICE-based vehicular systems 1103
production and commercialization 1103
safety 1109
chemical reaction 1096
classification and characteristics 1096, 1097t
DMFC 1099
ESSs 1101, 1103
fuel- and air-feeding systems 1101
hydrogen 
delivery and fueling station 1095–1096
energy content 1093
production methods 1094, 1094f
renewable energy sources 1093–1094
storage tanks 1094–1095
sustainable transportation 1092, 1092f
PAFCs 1099
PCU 1101
photovoltaics 1093
reference power 1102
SoC 1102
stack 1100
step-up and step-down load conditions 1102
thermodynamic system 1101
ultracapacitors 1102–1103
wind turbines 1093
Fuel-cell-powered electric vehicles (FCEVs) 1108–1109
Fuel cell power plants 
applications 758
with auxiliary power devices 759, 760f
current-voltage characteristic 759, 759f
PEMFCs 758, 758f
with power conditioning unit 759, 759f
types 758
Fuel-cell vehicles (FCVs) 1024
advantages 1034
battery-operated vehicles 1034
characteristics 1034–1035, 1035t
disadvantages 1034–1035
hydrogen-rich fuels 1034, 1034f
regenerative braking 1034
Full-wave rectifier 20–21, 20f, 22f
Fully controlled three-phase three-wire AC voltage controller 
control characteristics 425, 425f
delta-connected R-load 425, 427f
Mode I 424
Mode II 424
RL load 425, 426f
star-connected load with isolated neutral 424
star-connected pure L-load 425
star-connected R-load 425
Fuzzy logic (FL) 
ANFIS 
learning algorithm 1239f, 1240–1242, 1241–1242f
structure of 1239, 1239f
brushless DC motor 1231
constant control signals 1236–1237, 1237f
control structure 1232, 1233f
DC-DC converters 1235
defuzzification 1234
error voltage 1236–1237, 1237f
FNN PI/PD-like fuzzy control structure 
input layer 1225
membership function 1226
output layer 1226
rule function 1226
structure 1225, 1226f
fuzzy-PID controller 
architecture of 1227, 1228f
vs. classical linear PID 1230
derivative controller 1223f, 1229–1230
genetic optimization-based approach 1230–1231
integral controller 1229
proportional controllers 1227–1229
H tracking controller 1231–1232, 1232f
input voltage 1236–1237, 1237f
membership functions and rules generation 1238–1239, 1238f
on-line adaptation 1234, 1234f
PI/PD-like fuzzy control structure 
architecture of 1222, 1223f
fuzzy-PD controller 1224–1225, 1225f
fuzzy-PI system 1223–1224, 1223–1224f
saturation equation 1222–1223
switch-mode power converters 
DC-DC 1236, 1236f
operational structure 1235–1236, 1235f
precision voltage reference 1235–1236, 1236f
test cases 1236–1237
Fuzzy logic control 
buck–boost rectifiers 1211t, 1212–1213, 1212f
defuzzification 1211, 1212f
fuzzification 1210–1211, 1210–1211f, 1211t
fuzzy sets 1208
inference engine 1211, 1211t, 1212f
input and output variables 1208–1209
lookup table construction 1211–1212, 1211t, 1212f
off-line implementation 1209–1210
online implementation 1209–1210
structure of 1208–1209, 1210f
Fuzzy logic controller (FLC) system 1280, 1281t, 1281f
Fuzzy-logic systems (FLSs) 1245–1246
Fuzzy neural network (FNN) PI/PD-like fuzzy control structure 
input layer 1225
membership function 1226
output layer 1226
rule function 1226
structure 1225, 1226f
Fuzzy-PID (FPID) controller 
architecture of 1227, 1228f
vs. classical linear PID 1230
derivative controller 1223f, 1229–1230
genetic optimization-based approach 1230–1231
integral controller 1229
proportional controllers 1227–1229

G

Gallium nitride (GaN) 
coefficient of thermal expansion 100
critical electric field 98–99, 99f
crystal structures 97–101
figures of merit 
for devices 101, 102t
for materials and technology 100–101, 100t
flow diagram 96, 96f
HEMT 
AlGaN/GaN interface, conduction band diagram 138, 138f
body-diode effect 140
buffer layer 136
channel layer 136–137
cross section 136, 136f
current collapse 137
DC characteristics 140
drain current 139, 140f
drain-source voltage 139, 140f
dual synchronous buck converter 142, 142f
dynamic ON-resistance measurement 139, 139f
electric field modulation 137
GaN/AlGaN/GaN heterostructure, conduction band diagram 138, 138f
GaN/AlN/AlGaN heterostructure, conduction band diagram 139, 139f
GaN capping layer 138
gate drive and logic circuits 142, 142f
gate overvoltage clamping 142, 142f
gate-source voltage 139, 140f
Kelvin connection 141, 142f
Miller effect 141
ON-state resistance 137
package and thermal dissipation path 143, 143f
parasitic turn-on control 141, 141f
peak primary current 143
resonant-reset forward converter 142, 143f
sheet electron density 138
static ON-resistance 139
synchronous buck converter 141, 141f
threshold voltages 140
two-dimensional electron gas (2DEG) 136–138
intrinsic carrier concentration 99
JFET 
LC-VJFET 131–133, 132f
lateral Schottky barrier diodes 
advantages 125, 127
AlGaN interfacial layer 126
buffer layers 126
cross section 125, 125f
equivalent circuit model 126, 126f
junction capacitance 126
ohmic contacts 126
with recessed dual anode metal 127, 127f
recess etching process 127
lightly doped drift region thickness 143–145, 145f
MOSFET 
fabrication 133
lateral MOSFET 134–136, 134–136f
vertical trench MOSFET 133–134, 133–134f
physical properties 97–98, 98t
saturated drift velocity 99
thermal stability 99–100
vertical PiN diodes 
cross section 128, 128f
ET structures 130
forward voltage drop 129
level-3 model 129
minimum width of lightly doped drift region 128–129, 128f
N-type GaN 128
reliability and performance 128
simulation results 129–130, 129f
total junction voltage 129
GaN enhancement-mode JFETs (E-HEMTs) 609–610
GaN lateral MOSFET 
breakdown 135
cross section 134–135, 134f
during OFF-state 135, 135f
RESURF concept 135–136, 135–136f
Gate-commutated turnoff thyristor (GCT) 50
Gate-controlled series capacitor (GCSC) 903–904, 903f
Gate-controlled thyristor (GCT) 603–604, 603–604f
Gate drivers 157, 159–160, 166, 171–172, 172f
Gate Kelvin contacts 172, 172–173f
Gate turn-off thyristor (GTO) 50, 92, 92f, 603–604, 603–604f
cylindrical anode shorts 63–64
displacement current 61–63
gate triggering characteristics 65–66, 66f
IGCT 64
off-state characteristics 65, 65f
on-state characteristics 64, 64f
rate of rise of off-state voltage 65, 65f
SPICModel 67, 67t, 67f
switching phases 66–67, 66f
Generation-1 and Generation-2 MCTs 71
Genetic algorithm (GA) 
MOGA 1266, 1266f
motor drives 
all-wheel electric vehicle drive system 1272–1273, 1273f
ANN 1280, 1280f
diesel-driven AC generator 1274
digital dynamic simulation model 1280–1289
dynamic error driven control 1276–1279
FLC system 1280, 1281t, 1281f
four-wheel permanent magnet DC motors 1270–1271
fuel cell stacks 1272f, 1274–1276, 1275–1276f
GPF scheme 1276
induction motor 1268–1269, 1268–1270f, 1271t, 1272f
PV array 1274, 1274f
renewable green energy sources 1271–1272
self-tuned variable structure sliding mode 1279–1280, 1280f
unified DC-AC utilization scheme 1273–1274
vs. PSO 1262, 1262t
Geothermal energy systems 
applications 754
binary-cycle power plants 756–757
components 755, 756t
dry-steam power plants 755
flash-steam power plants 755–756
schematic diagram 755, 756f
Glass bond 161
Graetz bridge 
current waveforms 240, 241f
load average voltage 238–240
parallel connection 238–240
series connection 238–240, 239f
transformer rating 240
voltage waveforms 240, 240f
Green plug/energy management/energy economizer (GP-EM-EE) 
conventional PID controller 1294–1295, 1295f
digital simulation results 1295–1299, 1295–1298t
dynamic error driven control 1292f, 1293–1294
low-cost switched power filter compensator 1291–1293, 1293f
series-parallel switched capacitor filter 1289–1291
triloop error-driven self-regulating dynamic controller 1291–1293, 1292f
WECS 1291
Grid-connected hybrid energy systems 823–824
Grid-connected PV systems 
applications 795
block diagrams 773, 773f
buck converter with half-bridge transformer link 799–800, 800f
centralized inverters 773–774, 774f
central plant inverter 804, 804f
components 773–774
current controlled inverter 796
current-source inverter 796
flyback converter 800, 800f
grid-compatible inverters 804–806
grid synchronization 776
inverter with high-frequency transformer 797–798, 797f
islanding mode 776–777
isolated converters 774, 775f
line-commutated inverter 796, 797f
microinverter 773–774, 774f
module integrated inverter 804, 805f
multilevel converters 798, 798f
multiple string DC/DC converter 804, 804f
multiple string inverter 804, 805f
non-insulated current source 799, 800f
non-insulated voltage source 799, 799f
parallel PV units 800, 801f
power control 800–804
self-commutated inverter 796–797, 797f
string inverters 773–774, 774f
transformerless converters 774–776, 775f
voltage controlled inverter 796
voltage-source inverter 796, 796f
Grid-connected wind energy systems 812–813, 812–813f
Grid-interactive inverters 783
Gross national product (GNP) 725

H

Haar wavelet transform 1107
Half controlled bridge converter 240–241, 241f
Half-wave rectifier 20–21, 20f, 22f
Hall-effect (HE) sensors 982–983, 982f
current sensing 984t, 987f, 989–990, 990t
operation of 988–989, 989t, 989f
switching signals 990, 990t
Hard-switching PWM converters 275–276
Harmonic pollution 529–530
Heric inverter 775, 776f
High-frequency diode rectifier circuits 177
design considerations 203–208
flyback converter 
basic circuit 198–201, 206f
idealized steady-state waveforms 198–201, 206f
practical circuit 203, 207f
forward converter 
basic circuit 194–195, 194f
flywheel diode 195
idealized steady-state waveforms 194–195, 196f
magnetic-reset clamping diode 195
practical circuit 198, 203–205f
with practical transformer 198, 200f
with Schottky diodes 198, 199f
with snubber across transformer 198, 201–202f
with ultra-fast diodes 195–198, 197f
forward recovery time 193
reverse recovery time 193
Schottky diode 193–194
simulation precautions 208
High frequency linked single-phase to three-phase matrix converters 
high frequency integral-pulse cycloconverter 447
high-frequency phase-controlled cycloconverter 447
topology 446–447, 447f
High-intensity discharge (HID) lamps 1072–1073, 1073f
High-power-factor electronic ballasts 
active solutions 707–708, 707–708f
circuit diagram 705–706, 706f
harmonic limiting standards 706, 706t
passive solutions 706, 707f
High-pressure discharge lamps 688
High-pressure mercury vapor lamps 689
High-pressure sodium lamps 689
High slip induction generator 816
High-voltage direct current (HVDC) transmission 
vs. AC transmission 
ground impedance 852
infrastructure costs 848, 852f
line compensation 852
line structures 848, 851f
power system interconnection 852
power transmission losses 848
stability limits 848
voltage control 848
applications 852–853, 865–866, 866f, 867t
bipolar link 853, 853f
converter stations 
AC filters 856, 856f, 868–869, 869f
compact station layout 870, 871f
controls 868
converter transformer 855, 855f
DC cables 857
DC filters 856, 868, 868f
DC smoothing reactor 856–857, 856f
DC switchgear 857
design aspects 866–870
high frequency (RF/PLC) filters 856
light-triggered thyristor 867–868, 867–868f
optical current transducer 869, 869f
outdoor valves 868
reactive power source 856
schematic diagram 854, 854f
series-compensated commutation 869, 870f
thyristor valves 854–855, 855f
transmission voltages 868
voltage-source converters 867t, 870, 870f, 871t
DC controls 
current control loops 860–861, 860f
equidistant pulse firing control 859
features 858
firing angle control 859–860
gamma control loop 861–862, 861–862f
hierarchy 862, 862f
primary functions 857–858
requirements 858, 858t
signals monitoring 862, 863f
two-terminal dc link 858–859, 858t, 859f
history 848
homopolar link 853–854, 853f
installations list 848, 849–851t
line-commutated converters 
vs. ac systems 247–248
asynchronous systems, interconnections 248
circuit and unilinear diagram 248, 249f
inverter side 249, 249f
rectifier side 248, 249f
monopolar link 853, 853f
MTDC operation 
control methods 865, 865f
parallel tap 864–865, 865f
series tap 864, 864f
over-current protection 862–863, 863t, 864f
over-voltages protection 863–864, 864f
reliability 852
simulation techniques 
TNAs 881–882
six-pulse bridge circuit 857, 857f
VSC-HVDC system  See (VSC-HVDC system)
High-voltage PIN diodes 
capacitor voltage 597
damped resonant frequency 598
drift region 594–595
forward bias carriers 594–595, 595f
forward stored charge 597
load parallel capacitor 598
reverse recovery charge 595–597
reverse recovery time 595–596, 598
SAS 599
SOS diode 596–598
SOS pulse generation 596, 596f
turn-off 595–596
turn-on 595
High-voltage thyristor 603, 603f
H-5 inverter 775, 776f
Horizontal-axis wind turbines (HAWTs) 808–809, 808f
Hybrid active power filters 
configuration 1366–1368, 1368f
experimental setup 1372, 1373f
passive filter quality factor 1370–1371, 1371f
power system equivalent impedance 1371, 1371f
principles of operation 1368–1370, 1368–1370f
tuned factor 1370–1372, 1372f
Hybrid electric vehicles (HEVs) 
advantages 1029
complex hybrid configuration 1032, 1033f
energy sources 1029
internal combustion engine 1086–1087
parallel driveline configuration 1087–1088
parallel hybrid configuration 1031, 1031f
power-flow diagram 1029–1030, 1030f
series driveline configuration 1087
series hybrid 1030–1031, 1030f
series-parallel 1032, 1032f
Hybrid energy system (HES) 
active configuration 1050, 1051f
applications 820
cascaded configuration 1051, 1051f
control of 822–823, 823f
grid-connected hybrid energy systems 823–824
multiple input configuration 1052–1054, 1052–1054f, 1054t
parallel configuration 821–822, 822f, 1051–1052, 1052f
passive configuration 1050, 1050f
power flow 1049–1050
series configuration 820–821, 820f
switched configuration 821, 821f
Hybrid static/rotary UPS 647–648, 647f
Hydroelectric power plant 734
Hysteresis band (HB) method 258–259, 259f

I

I2 average current mode control 547–548, 547f
Ideal series compensator 
circuit diagram 887, 887f
compensation voltage 887, 889
equivalent impedance 887
generic series compensator 888–889, 888–889f
phasor diagram 888, 888f
power transfer characteristics 889, 889f
reactive power 887–888
stability margin characteristics 889–890, 890f
Ideal shunt compensator 
circuit diagram 886, 886f
operating principles 886
phasor diagram 886, 886–887f
IEC1000-3-2 standard 530
Impedance-source inverters (ISIs) 289, 462
ideal waveforms 294, 298f
operation rules 293–294
output filter 294f, 295
switch states 294, 297t
topology 293, 296f
Incremental conductance technique (ICT) 771–773, 772f
Indirect field-oriented (IFO) drive 1248–1249
Indirect matrix converters (IMCs) 446, 446f, 459
Indirect multiphase matrix converters (IMMC) 508, 516
Indirect switch matrix circuits 7
Indirect transfer function (ITF) approach 441
Induction motor (IM) 1042–1043
control scheme 1255–1257, 1257–1258f
cycloconverter 959, 960f
flux and torque estimation 1248–1249
off-line trained ANN configuration 1249, 1250f
on-line trained ANN configuration 
desired state variable 1249–1250
experimental drive setup 1252–1253, 1254f
modeling results 1251–1252, 1252–1253f
multilayer feedforward neural networks 1250, 1251f
principle of 1250
rotor resistance estimation 1250–1251, 1251f
RWC algorithm 1255
skew 1317
slip power control 953f, 955–956, 955–956f
spatial orientation  See (Field-oriented control (FOC))
speed estimation 
adaptive control 1248
machine quantities 1247
measured speed vs. estimated speed 1247, 1249f
network training 1247, 1248f
speed control error 1248
stationary reference frame 1247, 1248f
structure of 1248, 1249f
SPWM inverter 956–959, 957–959f
squirrel-cage induction motor 1317
SRE block 
back-propagation learning rule 1254
block diagram 1255, 1255f
d-axis stator current 1254, 1254f
experimental results 1252f, 1255, 1256f
modeling results 1252f, 1255, 1256f
q-axis stator current 1254, 1255f
stator control 954–955, 954f
steady-state equivalent circuit 953–954, 953f
three-phase stator windings 1317
variable current–variable frequency (If) control 957f, 959–961, 960–961f
vector controls 
air-gap flux linkages 963–964f, 965–966, 966f
principles 962–964, 963f
sensors 961–962
squirrel-cage induction motor 961–962
Inductive-input PF corrector 534, 534f
Inductive power transfer (IPT) 712, 712f
Inductive power transfer system (IPTS) 
design goals 
coil design 1124
dynamic resonating circuits 1124
high power and large current 1123
insulation 1124
PATH program 1124, 1125f
power efficiency 1124
power supply 1124
resonant frequency variation 1124
roadway construction 1124
switching frequency 1122
use of core 1120, 1120f
Industrial Applications Society (IAS) 1398
Injection enhanced gate transistors (IEGT) 602–603
Input displacement factor (IDF) 436–437
33-level Input switched multilevel inverter (ISMI) 
cost function 1335
discrete-time model 1335
mismatch filter inductance errors 1336–1337, 1337f
output current 1334–1335, 1335f
overview 1333, 1334t, 1334f
steady-state performance 1335, 1336f
system parameters 1335, 1336t
transient response 1336, 1336f
voltage 1335
Insulated-gate bipolar transistor (IGBT) 9, 24, 95–96, 571, 602, 602f, 1442
basic structure 37
half-bridge power module 
cross section 160, 160f
equivalent circuits 158–159, 159f
external components 159–160, 159f
physical structure 158, 159f
power MOS transistors 90–91, 91f
power transistor 24
PSPICE model 38, 39t
single-phase inverter 38, 38f
static characteristics 37–38, 37f
switching characteristics 38, 38f
symbol 37, 37f
thermal modelling 1442
UPQC 38, 39f
Integral of time absolute error product (ITAE) 1162–1163
Integral pulse-density modulation (IPDM) 372
Integrated gate-commutated thyristor (IGCT) 50
Interior PM (IPM) motors 1043
Interline power flow controller (IPFC) 906, 906f
Internal combustion engines (ICE) 1029
Interphase transformer 238–240
ac current waveforms 238, 239f
double-star rectifier with 237–238, 237f
operation 237–238, 238f
Interrupt service routine (ISR) module 1320, 1320f
Inverter leg 290
Inverter-preferred UPS  See On-line UPS system
Inverters 
basic principle 289–290
classification 289, 290f
closed-loop operation 
feedback approach 327–332
feedforward approach 327–328
modulating technique 289–290
motoring operating mode 290, 332–333, 332–333f
multilevel inverters 
basic principle 317, 319f
current source-based multilevel topologies 320–321
modulation techniques 321–327
voltage source-based multilevel topologies 317–320
regenerative operating mode 290
three-phase CSIs 336
three-phase VSIs 333–336
reversible-current topology 290
single-phase inverters 
boost inverter 295
CSIs 291–293
impedance-source inverter 293–295
pulse width modulation 295–302
VSIs 290–291
three-phase inverters 
CSIs 309–317
VSIs 302–309

J

Junction field-effect transistors (JFETs) 83, 604–605, 604–605f

K

Kalbarri power-conditioning system 803, 803f
Kirchhoff’s current law (KCL) 8, 9f
Kirchhoff’s voltage law (KVL) 8, 9f
Kyoto agreement 783

L

Laser distance measurement sensor installation 840, 840f
Lateral channel GaN JFET with a vertical drift region (LC-VJFET) 131–133, 132f
Lateral channel JFET (LCJFET) 111, 112f
Lateral punch-through transistor (LPTT) 
characteristics 87, 88f
structures 87, 88f
Lenz’s law 576, 576f
Levelized cost of energy (LCOE) 1430, 1431f
Lighting control circuits 79, 80f
Light-triggered thyristor (LTT) 603, 603f, 867–868, 867–868f
Linear feedback control 
compensator selection and design 1150
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.222.240.21