single-phase bridge rectifier 211
single-phase half-wave rectifier 209–210
thyristors 76, 76f
unity power factor single-phase rectifiers 
applications 225–227
PWM rectifier in bridge connection 224–225
single-phase boost rectifier 218–223
SPMC 230
synchronous rectifier 227–230
voltage doubler PWM rectifier 223–224
Single-phase diode rectifier 
design considerations 181–182, 182t
performance parameters 
current relationships 180
form factor 180
harmonics 181
rectification ratio 180
ripple factor 180–181
TUF 181
voltage relationships 179–180
single-phase full-wave rectifiers 177
with center-tapped transformer 178, 178–179f
with center-tapped transformer and bridge rectifiers 178, 179f
voltage and current waveforms 178, 179f
single-phase half-wave rectifiers 177
with resistive load 178, 178f
voltage and current waveforms 178, 178f
Single phase matrix converter (SPMC) 230
commutation problem 230
operation 230, 230f
switching pattern, commutation strategy 230, 230f
Single-phase to single-phase cycloconverter 
operation with RL-load 428–429, 428f
operation with R-load 428, 428f
power circuit 427–428, 427f
Single-phase VSIs 
full bridge 
ideal waveforms 291
switch states 291, 292t
topology 290, 291f
half bridge 
ideal waveforms 291, 292f
switch states 291, 291t
topology 290, 291f
operation rules 290–291
output filter 291, 294f
Single-switch circuits 4–5
Single-way multiphase systems 
form factor and ripple factors 474, 475f
m-phase rectifier structure 474, 474f
output waveform 474, 474f
topologies 
m-phase single-way rectifier structure 474, 474f
number of phases 475, 475f
output waveform 474, 474f
TUF 475
Sinusoidal pulse width modulation (SPWM) 488, 1158, 1158–1159f
Six-phase AC to DC converters 
six-phase double-bridge full-wave uncontrolled rectifiers 476, 476f
six-phase half-wave controlled rectifiers 476–477, 477f
six-phase half wave with a neutral line circuit 475, 475–476f
Six-pulse/double star rectifier 
AC current waveforms 236, 237f
direct voltage 235–236
with interphase connection 
AC current waveforms 238, 239f
firing angle variation 238, 238f
interphase transformer 237–238
operation 237–238, 238f
topology 237–238, 237f
thyristor side windings 235–236, 236f
Sliding-mode control (SMC) theory 
buck–boost dc/dc converter 1165, 1167f
closed-loop control applications 1163
constant-frequency operation 1164, 1165f
control law 1162–1163
current-mode hysteresis modulators 1182–1183, 1183–1185f
DC capacitor voltage equalization 1188f, 1189–1190t, 1190–1191, 1191–1192f
input current controller 1202
input power factor control 1194t, 1196–1198, 1196–1199f, 1198t
multilevel converter 1191–1193, 1193–1194f
output voltage control 1169–1170, 1170f, 1193–1195, 1194t, 1194f, 1196f
PI-based controller structure 1172f, 1174–1176, 1174–1176f
power operational amplifier 1170, 1170–1172f
pulse-width modulators 1148f, 1161
PWM audio amplifier 1176–1179, 1177–1178f
PWM rectifier 1180–1182, 1180–1181f
results 1201f, 1202, 1203f
robustness 1164
sigma-delta modulator 1176f, 1178–1180f, 1179–1180
single-phase half-bridge converter 1166–1170, 1167f
single-phase multilevel converters 1186–1187, 1187–1188f, 1189–1190t, 1190f
sliding-mode surface 1185–1186, 1186f
α, β space vector current 1159t, 1181f, 1182, 1182t
stability 1163–1164
state-space modeling 1161–1162
steady-state error 1164–1165
switching law 1164, 1185–1186, 1186f
12-pulse rectifier 1148f, 1171–1174, 1172f
Slow switching frequency changer (SSFC) 436–437
Small signal diode 18, 20f
Smart hydrogen station (SHS) 1096
Society of Automotive Engineers (SAE) 1068–1069, 1069–1070t
Soft-switched converters 
advantages 340
EMI emission 
hard-switched flyback converter 368–369, 370f
soft-switched flyback converter 368–369, 371f
EP-QR converters 
family 368–369, 370f
soft-switched DC-DC flyback converter 368, 369f
snubbers 
McMurray snubber 369–370, 371f
McMurray snubber with energy recovery 369–370, 371f
switching stress 369
Undeland snubber 369–370, 371f
soft-switching DC-AC power inverters 
ARCPI 371, 379–380, 381f
resonant DC link inverters 371–379
resonant pole inverters 371, 379–381
ZVS inverter applications 370–371
Soft-switched DC-DC flyback converter 368, 369f
Solar energy conversion and photo-voltaic systems 
components 735–736, 736f
I-V characteristics 736–737, 737f
MPPT techniques 737–739
passive and active systems 735
power electronic interfaces 
boost converter with full-bridge inverter 740, 740f
buck converter with full-bridge inverter 740, 740f
inverter utilization 739, 739f
isolated dc/dc converter topology 739–740, 740f
multistring inverter 740, 741f
power electronic conditioning circuits 739
single-stage inverter 740, 740f
for stand-alone PV systems 741
PV cell structure 734–735, 735f
PV effect 734–735
sun tracking systems 737, 737f
Solar water pumping 
AC motors 792, 793t
centrifugal pumps 791–793
DC motors 792, 793t
displacement pumps 791
I-V characteristics 791–792, 792f
power conditioning units 
BDCM 793, 794f
DC-DC converter 792–794, 794f
DC motor-driven pumping scheme 792, 793f
off-the shelf 794, 794f
positive displacement type pumps 792
voltage/frequency control 794, 794f
wound low voltage induction-motor-driven submersible pump 794, 794f
speed torque characteristics 792, 792f
Solder 161
Solid oxide fuel cell (SOFC) 1099–1100, 1099f
Solid-state ballasts  See Electronic ballasts
Solid-state Marx-based high-voltage switches 
HV pulse power topology 
circuit diagram 628, 628f
operating modes 629, 630f
with series switches 629, 629f
voltage waveforms 629, 631f
positive voltages, series switch 628, 628f
voltage imbalance 629
Solid-state Marx generators 
bipolar generators 
charging mode 630, 631f
circuit topology 629, 631f
negative pulse operation 630, 632f
positive pulse operation 630, 632f
multilevel bipolar generators 631–633, 633–634f
negative pulses generation 
capacitive load 626, 626f
inductive load 626, 626–627f
modular stages 623–624, 624f
resistive load 624–626, 624–625f
positive pulses generation 627–628, 627–628f
Solid-state PP topologies 
cascaded topology 620–623
dc-dc isolated converters 
flyback topology 617–619, 617–618f
forward topology 615–617, 615f, 617f
full-bridge topology 619–620, 620f
half-bridge topology 619, 619f
solid-state Marx generators  See (Solid-state Marx generators)
direct switching 
floating switch 612–614, 612–613f
ground switch 614, 614f
series-stacked semiconductor topology 614, 614f
solid-state Marx-based high-voltage switches 628–629, 628–631f
voltage pulse wave practical shape 612, 612f
Space charge limiting load (SCLL) 90, 90f
Space vector control (SVC) 413–414
Space vector modulation (SVM) approach 
algorithm 1259–1260, 1259f
matrix converters (MC) 439, 441–443, 442f
switching power converters 1159, 1159t, 1159–1160f
Space-vector pulse-width modulation (SVPWM) 
carrier-based PWM 
advantages 489–490
principle 489
for sinusoidal output 490–491, 490–491f
seven-phase voltage source inverter 
in linear modulation range 504
low-order harmonics elimination 504
simulation results 505
with sinusoidal output 505–507, 505–508f, 505t
Sparse matrix converter (SMC) 446, 446f
S4-PFC converter 560, 563f
Spice-based software simulation tools 
AC induction machines 
current injection 1412–1413
differentiator function 1415–1416
indirect vector control 1411f, 1414–1415, 1414–1415f
results 1416, 1417f
transformation matrices 1414
convergence problems 1404
design and analysis 1403–1404
electric machines 1409–1412, 1411–1413f, 1413t
LTspice 
hyperbolic tangent function 1404, 1405f
sensorless vector control 1417–1420, 1418–1420f
synchronous buck converter 1404–1405, 1405–1406f
three-phase inverter 1405–1406, 1407–1409f, 1408
three reference signals 1406–1407
time-averaged replacement 1405, 1405f
transistor pairs 1407–1408
triangular carrier signal 1406
Squirrel cage induction machines 745, 745f
Stand-alone inverter 783
Stand-alone PV system 777–778, 777f
battery charging 
analog control mechanisms 789
battery cycles vs. depth of discharge (DOD) 787, 787f
charge controllers 787–788
digital control mechanisms 789
lead-acid batteries 786–787
sealed batteries 786–787
block diagram 777, 777f
inverters 
bidirectional inverters 790–791, 791f
efficiency curve 790, 790f
features 789
full-bridge configuration 790–791
single-phase inverter 790, 790f
three-phase four-wire inverter 790, 790f
voltage-source inverters 789
power converters 777–778
schematic diagram 786, 786f
solar water pumping 
AC motors 792, 793t
centrifugal pumps 791
DC motors 792, 793t
displacement pumps 791
I-V characteristics 791–792, 792f
power conditioning units 792–795
speed torque characteristics 792, 792f
Stand-alone wind power systems 810–811
Standby UPS 
configuration 641–642, 642f
DC/AC inverter 642, 642f
ferroresonant standby UPS system 642–643, 643f
full-bridge diode rectifier 642, 642f
full-bridge full controlled topology 642, 642f
State of charge (SoC) 1102
Static induction devices 
emitters 86–87, 86–87f
gate turn off thyristor 92, 92f
LPTT 87, 88f
power MOS transistors 90–91, 90–91f
SCLL 90, 90f
SID 87, 87–88f
SIT 
bipolar mode of operation 85–86, 86f
BJT saturation 88–89f, 89
characteristics 83–85, 84f
cross section 83, 84f
static induction thyristor 91–92, 91–92f
Static induction diode (SID) 
circuit diagram 87, 87f
cross section 87, 87f
Schottky diode with enlarged breakdown voltages 87, 88f
Static induction MOS transistor (SIMOS) 
advantages 89–90
cross sections, bipolar transistors 89–90, 90f
MOS-controlled punch-through transistor 89, 89f
structure 89–90, 89f
Static induction thyristor (SITh) 50, 72, 72f, 83, 91–92, 91–92f
Static induction transistor (SIT)  See also Junction field-effect transistors (JFETs)
bipolar mode of operation 85–86, 86f
BJT saturation 88–89f, 89
characteristics 
drain currents 84
early SIT design 83, 84f
linear scale 85, 85f
logarithmic scale 85, 85f
potential distribution 84–85, 84–85f
cross section 83, 84f
disadvantages 86–87, 86f
junction field effect transistor 83
Static induction transistor logic (SITL) 83
circuit diagram 87–89, 88f
cross section 87–89, 88f
measured characteristics 87–89, 89f
Static Kramer system 818–819
Static Scherbius system 819
Static synchronous compensator (STATCOM) 
cascade converter 897, 897f
control techniques 
active power 898, 899f
basic switching techniques 895
reactive power 897–898, 899f
voltage-oriented techniques 899–900, 899f
DC-side capacitor 900
with energy storage 900–901, 900f
MMC 897, 898f
multipulse converter 895, 895–896f
PWM with harmonic elimination technique 895–896, 896f
sinusoidal PWM control technique 897
vs. SVC 901, 901f
transient stability 894–895
Static synchronous series compensator (SSSC) 901–903, 902–903f
Static var compensator (SVC) 529–530, 891–892, 892f
Stator resistance estimator (SRE) block 
back-propagation learning rule 1254
block diagram 1255, 1255f
d-axis stator current 1254, 1254f
experimental results 1252f, 1255, 1256f
modeling results 1252f, 1255, 1256f
q-axis stator current 1254, 1255f
Steinmetz equation 573–574
Step-down DC chopper 
with resistive load 276, 276f
with RLE load 276, 277f
Step-down DC-DC converter 
basic converter 277–278, 277f
transformer versions 
forward converter 278–279, 278f
full-bridge converter 279, 279f
half-bridge converter 279, 279f
push-pull converter 279, 279f
Stepper motor drives 
acceleration-deceleration profiles 1003–1004, 1004f
bifilar windings 1001–1002f, 1002
bipolar drive circuits 1002, 1002f
hybrid 998–999, 998f
microstepping 1002–1003, 1002–1003f
multistack variable-reluctance motor 997–998, 998f
permanent-magnet 999, 999f
single- and multi-step responses 1000–1001, 1000f
single-stack motors 996–997, 997f
unipolar drive circuits 1001–1002, 1001f
variable-reluctance motor 997f, 999, 999f
working principle 996
Step recovery diodes (SRD)  See High-voltage PIN diodes
Step-up converter 279–280, 280f
Step-up DC chopper 276–277, 277f
Subharmonic PWM (SH-PWM) 400, 402–403f
Subsea electric power distribution system (SEPDIS) 942, 943f
Sun tracking systems 737, 737f
Superconducting magnetic energy storage (SMES) 900–901, 900f
Superjunction (SJ) transistors 610
Surface-magnet motor 
back emf 976, 976f
rotor configuration 975, 975f
sensorless operation 977
trapezoidal-wave motor 970f, 976–977, 976f
Surface-mounted PM (SPM) motors 1043
Switched-reluctance (SR) motor drive 
advantages 1005, 1005t
aligned position 1004
applications 1005
bifilar type inverter circuit 1006, 1006f
chopping-mode control 1010f, 1012, 1012f
design options 1005, 1006f
disadvantages 1005, 1005t
four-phase topology 1004, 1004f
linear model 
constant phase winding current 1008f, 1009
high-speed approximation 1010–1011, 1011f
inductance and torque variations 1008–1009, 1008–1009f
low to medium motor speeds 1010, 1010f
magnetization characteristics 1007–1008, 1007f
negative/braking torque 1009
variable-reluctance machine 1009
magnetic saturation 1011–1012, 1011f
maximum speed 1005–1006
nonlinear model 1011–1012, 1011f
number of motor phases 1004f, 1005
number of power devices 1006
PEC 1043
position sensing 1013–1014
single-pulse mode control 1011f, 1013
split-dc-supply-type inverter circuit 1006f, 1007
two-switch-inverter-type circuit 1006f, 1007
unaligned position 1004–1005, 1005f
Switching amplifiers 3
Switching frequency optimal PWM (SFO-PWM) 400, 402–403f
Switching functions 10–11
Switching power converters 
backstepping control 
buck–boost converter 1215–1217, 1215–1216f
Lyapunov function 1213–1214
single phase dc-ac inverter 1217–1218, 1217–1218f
tracking error 1214
zero error 1213–1215
buck–boost dc/dc converter 
discontinuous mode 1144f, 1156–1157, 1156–1157f
integral plus zero-pole compensation 1144f, 1150, 1151–1152f
forward dc/dc converter 1147f, 1151, 1152–1153f
fuzzy logic control 
buck–boost rectifiers 1211t, 1212–1213, 1212f
defuzzification 1211, 1212f
fuzzification 1210–1211, 1210–1211f, 1211t
fuzzy sets 1208
inference engine 1211, 1211t, 1212f
input and output variables 1208–1209
lookup table construction 1211–1212, 1211t, 1212f
off-line implementation 1209–1210
online implementation 1209–1210
structure of 1208–1209, 1210f
linear feedback control 
compensator selection and design 1150
integral plus zero-pole compensation 1149
lag compensation 1149
lead compensation 1149
PI compensation 1149
PID notch filter type 1149–1150
transient behavior and stability 1149
phase controlled rectifiers 1148f, 1152, 1153–1155f
predictive optimum controllers 
αβ currents 1206
dc capacitor voltage unbalance 1206
non-linear fast predictive optimum control 1205–1206
non-linear predictive optimum control 1203–1205
quadratic cost functional 1206–1207
switching power converter 1202–1203
SMC theory 
buck–boost dc/dc converter 1165, 1167f
closed-loop control applications 1163
constant-frequency operation 1164, 1165f
control law 1162–1163
current-mode hysteresis modulators 1182–1183, 1183–1185f
DC capacitor voltage equalization 1188f, 1189–1190t, 1190–1191, 1191–1192f
input current controller 1202
input power factor control 1194t, 1196–1198, 1196–1199f, 1198t
multilevel converter 1191–1193, 1193–1194f
output voltage control 1169–1170, 1170f, 1193–1195, 1194t, 1194f, 1196f
PI-based controller structure 1172f, 1174–1176, 1174–1176f
power operational amplifier 1170, 1170–1172f
PWM audio amplifier 1176–1179, 1177–1178f
PWM rectifier 1180–1182, 1180–1181f
results 1201f, 1202, 1203f
robustness 1164
sigma-delta modulator 1176f, 1178–1180f, 1179–1180
single-phase half-bridge converter 1166–1170, 1167f
single-phase multilevel converters 1186–1187
sliding-mode surface 1185–1186, 1186f
α, β space vector current 1159t, 1181f, 1182, 1182t
stability 1163–1164
state-space modeling 1161–1162
steady-state error 1164–1165
switching law 1164, 1185–1186, 1186f
12-pulse rectifier 1148f, 1171–1174, 1172f
state-space modeling 
continuous mode of conduction 1142–1143
linearized model 1145–1146
state-space averaged model 1143–1145, 1144–1145f
switched model 1143
transfer functions 1145f, 1146–1148, 1147f
Switching regulators 275
double-ended flyback regulator 672, 673f
double-ended forward regulator 676, 676f
full-bridge regulators 678–679, 680f
half-bridge regulators 676–678, 677f
operation mode 668
PWM control circuits 
duty cycle 679–681
fixed-frequency controller 681, 681–683f, 683
simplified form 659–660, 660f
single-ended isolated flyback regulators 
circuit diagram 668–669, 670f
circuit elements 668–669
continuous-mode flyback regulators 671–672, 671f
discontinuous-mode flyback regulators 669–671
steady-state waveforms 668–669, 670f
single-ended isolated forward regulators 
circuit diagram 673, 674f
continuous-mode operation 673
current components, primary winding 673, 675f
discontinuous mode 673
duty cycle 675
magnetizing current 673
maximum collector current 675
maximum collector voltage 675
output inductor current 675
output voltage 675
steady-state waveforms 673, 674f
total primary current 673
solid-state devices 659–660
Switch matrix 7–8
Switch-mode power supply (SMPS) 4, 571–572
harmonic reduction 530
THD 530
Synchronous converter 284–285, 285f
Synchronous generator (SG) 
armature voltage 830
DfR 1425, 1425f
equivalent circuit 829–830, 830f
open-circuit characteristic 830, 830f
V curve 830, 831f
Synchronous motor drives 
CSI drive 
dc-link reactor 968–969, 969f
firing angle 970
PWM current-source drive 970, 970f
quasi-square-wave current waveforms 969–970, 969f
I is in phase with Ef 972, 972f
operation with I lagging Ef 971–972, 972f
operation with I leading Ef 972–973, 972–973f
steady-state equivalent-circuit 966–967, 966–967f
vector control 973–975, 974f
voltage-source inverter 967–968, 968f
Synchronous rectifier (SR) 227–230
advantages 229
circuit diagram 229, 229f
current signal diagram 229, 229f
current spike waveform 229–230, 230f
current with multiple zero crossing waveform 229–230, 230f
MOSFET conduction loss 227–229
turn-on and turn-off period 229, 229f
Synchronous reference frame method 1348
Synchronous reluctance motor drives 
block diagram 1018–1019, 1019f
control strategies and parameters 1017–1018, 1018f
conventional synchronous 1014
drive performance 1018
fiber-spinning industry 1014
mathematical modeling 1015f, 1016–1017, 1018f
maximum torque per ampere 1018
principles 1014–1015, 1015f
structure 1015–1016, 1016f

T

Tandem induction generator 816
Thermal management, power module 
air cooling 168, 168f
double-sided cooling 169, 169f
equivalent thermal network 167–168, 167f
liquid cooling 168, 168f
physical integration 166–167
power dissipation 166–167
power losses 166–167
thermal cycling 167
Thermal modelling 
convection 1444, 1444f
dynamic thermal circuit 1445–1446, 1445f
dynamic thermal equivalent circuit models 1448–1450, 1448–1450f
finite element numerical methods 1447–1448, 1447f
ladder networks 1446, 1446f
magnetic components 1442–1443, 1443f
radiation 1444
semiconductor device 1442
steady state thermal circuit 1444–1445, 1445f
thermal conduction 1443–1444, 1443f, 1443t
transient impedance 1446–1447, 1446–1447f
Thermoelectric power plants 
active and reactive outputs 734
components 733, 733t
frequency and voltage regulations 734
operation 732–734
Rankine cycle 732, 733f
Three-phase AC-AC voltage controllers 
fully controlled three-phase three-wire AC voltage controller 424–425, 424f, 426f
phase-controlled three-phase AC voltage controllers 422–425, 423f
Three-phase CSIs 
carrier-based PWM techniques 
circuit diagram 310, 311f
harmonics 311–312
ideal waveforms 311, 312f
shorting pulse generator 311, 311f
switching pulse generator 310–311, 311f
third- and ninth-harmonic injection modulating signals 313, 313f
DC link voltage 316–317, 318f
selective harmonic elimination 
chopping angles 314, 315f
gating pattern generator 314, 315f
ideal waveforms 314, 316f
space-vector-based modulating techniques 
normalized sampling frequency 316, 318f
space-vector sequences 315–316
space-vector transformation 314–315, 316f
switch states 310t, 314
zero space-vector selection 315–316, 317t, 317f
square-wave operation 313–314, 314f
switch states 310, 310t
topology 309, 310f
Three-phase diode rectifiers 
bridge rectifiers 182
circuit diagram 185, 185f
design parameters 184t, 186
voltage and the current waveforms 185, 186f
operation with finite source inductance 
rectifier with transformer leakage inductances 186, 186f
waveforms 186, 187f
star rectifiers 182
basic circuit 182–183, 183f
design parameters 183, 184t
three-phase double-star rectifier with interphase transformer 184–185, 184–185f
three-phase interstar rectifier circuit 184, 184f
voltage and current waveforms 182–183, 183f
Three-phase full-wave rectifier  See Graetz bridge
Three-phase half-wave rectifier 
AC current waveforms 234–235, 236f
DC current waveforms 233, 235f
firing angle 233–234, 234f
gating delay 233, 234f
load average voltage 233–234
topology 233, 234f
Three-phase six-pulse and twelve-pulse cycloconverter 432, 432f
Three-phase three-pulse cycloconverter 
circulating current-free mode operation 431–432, 431f
circulating-current mode operation 430, 430f
feeding single-phase load 429, 429f
feeding three-phase load 429, 429f
firing angle variations 430–431, 431f
output voltage waveform 429, 429f
Three-phase VSIs 
DC link current 308–309
load-phase voltage 309, 309f
motoring operating mode 332, 332–333f
regenerative operating mode 
as normal operating mode 335–336, 335f
occasional regenerative operating mode 333–335, 334–335f
SHE technique 304–305, 307f
sinusoidal PWM 
ac output line voltage 304
dc link voltage 304
ideal waveforms 302–303, 303f
ninth harmonic in phase 302–303
with zero sequence signal injection 304, 305–306f
space-vector (SV)-based modulating techniques 
normalized sampling frequency 307–308
space-vector sequences 307
space-vector transformation 305–307, 307f
zero space-vector selection 307
square-wave operation 304, 304f
switch states 302, 302t
topology 302, 302f
Threshold voltage 15
Thyristor-based FACTS controllers 
static var compensator 891–892, 892f
thyristor-controlled phase-angle regulator 893–894, 893–894f
thyristor-controlled reactor 890, 891f
thyristor-controlled series capacitor 892–893, 892–893f
thyristor-switched capacitor 890–891, 891f
thyristor-switched series capacitor 892, 892f
Thyristor-controlled inductor (TCI) 78–79, 80f
Thyristor-controlled phase-angle regulator (TCPAR) 893–894, 893–894f
Thyristor-controlled reactor (TCR) 890, 891f
Thyristor-controlled series capacitor (TCSC) 892–893, 892–893f
Thyristor rectifiers  See Line-commutated controlled rectifiers
Thyristors 9
applications 
DC–AC utility inverters 77, 77–78f
lighting control circuits 79, 80f
line-frequency phase-controlled rectifiers 76
motor control 77, 78–79f
single-phase controlled rectifier 76, 76f
VAR compensators and static switching systems 78–79, 80f
base resistance-controlled thyristor 71, 71f
basic structure 50–51, 50f
bi-directional thyristors 73, 73–74f
bistable 49
control terminals 49
dynamic switching characteristics 
amplifying gate 58–59, 58f
anode shorts 58, 58f
cathode shorts 57–58, 57f
GTO cross section 56–57, 57f
initial turn-on region, gate-cathode periphery 55, 56f
interdigitated gate-cathode patterns 55–56, 56f
plasma spreading time 55
temperature dependencies 59, 59f
gate circuits 
back-porch current 74
gate current waveform 74, 74f
gate i-v characteristics 74, 75f
gate pulses 75–76, 76f
IGCT gate drive 76, 76f
multicell GTO model 76, 76t
transformer-isolated gate-drive circuit 74–75, 75f
Generation-1 and Generation-2 MCTs 71
inverter thyristors 50
latching 49
MOS-controlled thyristors 50
cross section 67–68, 68f
DG-EST 68
equivalent circuit and switching characteristics 68, 69f
EST 68
vs. IGBT 68–69
overcurrent protection 70
paralleling 70
vs. power BJT 68–69
vs. power MOSFET 68–69
simulation model 70–71
snubbers 70, 70f
turn-on and turn-off 68–69
MTO thyristor 71–72, 72f
N-channel MCT 71
operation 51–52, 51f
optically triggered thyristors 72–73, 73f
parameters 
electric characteristics 59–61, 60t
junction temperature 60
maximum ratings 59–60, 60t
symbols and definitions 61, 61–63t
phase-control devices 50
SCRs and GTOs 50
cylindrical anode shorts 63–64
displacement current 61–63
gate triggering characteristics 65–66, 66f
IGCT 64
off-state characteristics 65, 65f
on-state characteristics 64, 64f
rate of rise of off-state voltage 65, 65f
SPICModel 67, 67t, 67f
switching phases 66–67, 66f
SITh/FCTh 50, 72, 72f
snubber circuits 74, 74f
static characteristics 
current–voltage curves 52–53, 52f
edge and surface terminations 53–54, 53–54f
packaging 54–55, 54f, 55t
Thyristor-switched capacitor (TSC) 78–79, 80f, 890–891, 891f
Thyristor-switched series capacitor (TSSC) 892, 892f
Timer counter register (TxCNT) 1321, 1321f
Total harmonic distortion (THD) 530, 1348, 1349f
Total harmonic distortion of the line current (THDi) 1375, 1376f
Transconductance 90–91
Transformerless converters 
common mode converter 775, 776f
Heric inverter 775, 776f
H-5 inverter 775, 776f
Transformers 830–831, 832f
Transformer utilization factor (TUF) 181
Transient network analyzers (TNAs) 881–882
Transistors 9, 47–48, 47f
Transmission lines 
conductors 
ACSR conductors 832, 833–834f
catenary sag model 836, 836f
temperature vs. sag 837, 837t
thermal expansion coefficients 836t
types 832
dynamic thermal current rating 
block diagram 838, 838f
conductor temperature measurement method 840
CTM 838
ground clearance 840
line clearance 840
line sag monitoring 838–839, 839f
tension monitors 839–840
using weather data 841, 841–842f
weather model 838
insulation 845–846
overvoltages 
control methods 844–845
due to abnormal conditions 842
by lightning strikes 842–844, 843f
lower frequency harmonic resonant overvoltages 842
phase-to-ground per unit overvoltage 841–842
power-frequency overvoltages 842
switching surges 842
by switching surges 844
temporary overvoltage 844
power transfer limiting factors 
convection heat-loss 833–834
dynamic thermal rating 833
ohmic losses heat gain 835
radiative heat loss 834–835, 835f
solar heat gain 835
static thermal rating 833
thermal rating calculation 833, 837–838
weather monitoring 840, 840f
Triac 50, 73
cross section 73, 74f
lighting control circuits 79, 80f
Triangular carrier (TC) method 258–259, 259f
Triode region 33
True UPS  See On-line UPS system
Turn-off snubber network 31, 31f
Two-coil inductive WPT system 
compensation topologies 715, 715f
equivalent circuit 714, 714f
key system parameters 715, 716t
link efficiency 714–715, 716f
Two speed pole amplitude modulated induction generator (PAM) 815

U

Ulbricht photometer 686
Ultracapacitors (UCs) 1102–1103
Ultra sparse matrix converter (USMC) 446–447, 447f
Undeland snubber 369–370, 371f
Unified power flow controller (UPFC) 
block diagram 904, 904f
compensation voltage 905
direct voltage control 905, 905f
line diagram 905, 905f
phasor diagram 904–905, 904f
shunt compensator 905
voltage control block diagram 905, 905f
Unified power quality conditioner (UPQC) 38
Uninterruptible power supplies (UPS) system 79, 80f
applications 641, 649–650
classifications 
DC line-interactive UPS system 648, 648f
hybrid static/rotary UPS 647–648, 647f
line-interactive UPS systems 644, 645f
on-line UPS system 643–644, 643f, 645f
rotary UPS systems 645–647, 646f
standby UPS 641–643
universal UPS 644–645, 645–646f
configurations 648, 649t
current and voltage control loops 650–651, 651f
DC UPS 653, 654f
deadbeat control 652
direct power control method 653, 654f
distributed UPS network 650, 650f
energy storage devices 
battery 653–655, 655f
flywheel 655
fuel cell 655, 655f, 656t
features 641
feedback control 650
grid-tied AC/DC rectifier 653, 654f
performance evaluation 648–649
sinusoidal PWM 650
SPWM control technique 651
three-phase DC/AC inverter 650, 651f
two-control loop method 653, 655f
voltage and current control 652–653, 653f
Unity displacement factor frequency changer (UDFFC) 436–437
Unity power factor single-phase rectifiers 
applications 225–227
PWM rectifier in bridge connection 224–225
single-phase boost rectifier 218–223
SPMC 230
synchronous rectifier 227–230
voltage doubler PWM rectifier 223–224
Universal UPS 644–645, 645–646f
Unrestricted frequency changer (UFC) 436–437

V

Variable-delay RPWM (VD-RPWM) 1392–1393, 1392f
Variable frequency peak current control 548–549, 548f
Variable on-time (VOT) control 561–563
Variable ratio transmission (VRT) 816
Variable-speed constant-frequency (VSCF) systems 425–427
Variable speed control 
AC machines 1305, 1305f
DSP-based control 
induction motors 1317–1322, 1319–1323f
permanent magnet brushless DC machines  See (Permanent-magnet alternating current (PMAC) motors)
peripherals 1304–1305, 1304f
three-phase ac motor 
actual direct and quadrature current components 1306
A/D conversion 1307–1308
configuration 1305–1306, 1306f
encoder 1308, 1308f
PI regulator 1308–1309, 1308f
position sensing 1308, 1308f
PWM generation 1306–1307, 1307f
SVM 1306
Variable speed drive (VSD) system 913 See also Electric variable speed drive system
Variable speed hydraulic transmission 816
Variable speed wind turbines (VSWT) 
advantages 808–809, 814–815
generators 
squirrel-cage induction generator 818
synchronous generator 817
wound rotor induction generator 818–819
Variable-voltage variable-frequency (VVVF) ac drives 425–427
Vertical-axis wind turbines (VAWTs) 808, 808f
Vertical channel JFETs (VCJFETs) 112–113, 112f
Vertical JFET (VJFET) 130–131, 130–131f
Voltage-based maximum power point tracker (VMPPT) 772
Voltage-controlled VSI (VCVSI) 
decoupling inductor 802
equivalent circuit diagram 801, 802f
fundamental grid current 801
grid apparent power 801
parallel processing DGS 800–801, 801f
phasor diagram 801, 802f
power flow control 801
Voltage doubler PWM rectifier 
in bridge connection 
ac drive power circuit, locomotive 227, 228f
300 series Shinkansen locomotives, circuit diagram 227, 228f
single-phase UPS 227, 227f
control system 224, 225f
equivalent circuit 223–224, 224f
input current waveform 224, 225f
low-cost induction motor drive 225, 227f
power circuit 223, 224f
Voltage-fed resonant ballasts 694–695, 694f
Voltage-fed resonant inverters 
equivalent circuits 700, 701f
input voltage 700
operating waveforms 700, 701f
parallel-loaded resonant circuit 702–703, 702f
series-loaded resonant circuit 701–702, 701f
series-parallel-loaded resonant circuit 703–704, 703f
Voltage model 1250
Voltage multiplier 21, 24f
Voltage-source current-controlled PWM rectifier 
closed-loop rectifier transfer function 258, 258f
current waveforms 259, 259f
distortion 259, 260f
HB method 258–259, 259f
PS method 258, 259f
PWM pattern 258
TC method 258–259, 259f
topology 257–258, 257f
Voltage-source inverters (VSIs) 289
feedback techniques 
vs. feedforward techniques 328–329
hysteresis current control 329, 329f
linear control 329–331, 329–331f
feedforward techniques 327–328, 327–328f
motor control 77
single-phase inverters 
full bridge 290–291, 291f, 292t
half bridge 290–291, 291–292f, 291t
operation rules 290–291
output filter 291, 294f
three-phase inverters 
DC link current 308–309
load-phase voltage 309, 309f
SHE technique 304–305, 307f
sinusoidal PWM 302–304
space-vector (SV)-based modulating techniques 305–308
square-wave operation 304, 304f
switch states 302, 302t
topology 302, 302f
Voltage-source load-controlled PWM rectifier 263–264, 264f
Voltage source rectifier 
current waveforms 254–255, 256f
DC link voltage condition 255–256, 256f
four-quadrant operation 254–255, 255f
with harmonic elimination capability 264, 265f
operation principle 253, 254f
PWM pattern 253–254
using three-level converter 269–270, 271f
Voltage source rectifier-PWM voltage source inverter (VSR-VSI) 441
Voltage-source voltage-controlled PWM rectifier 
current waveforms 263, 263f
harmonic spectrum, SPWM modulation 261, 263f
one-phase diagram 259–260, 260f
sinusoidal modulation method 261, 262f
unity power factor operation 
implementation 260–261, 261f
steady-state operation 261, 262f
Volt-ampere reactive (VAR) compensators 
static transfer switch, UPS system 79, 80f
TCI 78–79, 80f
TSC 78–79, 80f
VSC-HVDC system 867t
AC shunt RLC-filters 872
ANPC converter 874, 874f
cascaded H-bridge converter 874, 874f
control system 
active power controller 881
block diagram 878, 878f
DC voltage controller 880–881
direct control method 878
limitations 880
reactive power controller 881, 882f
vector control method 878–880, 879f
converter transformer 872
DC capacitors 872–873
DC transmission system 872
flying capacitor VSC 873–874, 874f
four quadrant operation 876–877, 876f
multi-level voltage source converter 873
multi-pulse topologies 874
neutral-point diode-clamped VSC topology 873, 873f
operating principle 875–876, 876f
rectifier-inverter operation 877, 877–878f
single-line diagram 872, 872f
sinusoidal PWM 875, 875f
two-level voltage source converter 873, 873f
voltage source converter 872

W

Ward converter 637, 637f
Wavelet transform (WT) 1107–1108
Wide band gap power semiconductor devices 608–610
Wind-diesel hybrid systems 811–812
Wind power systems 
developments 806–807, 806t
grid-connected wind energy systems 812–813, 812–813f
PMSG 809
squirrel-cage induction generators 809
stand-alone wind power systems 810–811
synchronous generators 809
wind-diesel hybrid systems 811–812
wind turbines 
continuously variable speed systems 816–817
Cp–λ curve 807, 807f
discretely variable speed systems 815
fixed speed wind turbines 813–814
HAWTs 808–809, 808f
isolated grid supply system 819, 819f
power coefficient 807
power curve 807, 807f
tip-speed ratio 813
turbine power vs. shaft speed curves 807, 807f
variable-speed operation 817–819
variable speed wind turbines 814–815
VAWTs 808, 808f
wind power availability 807
WRIG 809
Wind turbine power plants 906, 907f
Wind turbines (WTs) 
Betz’s law 742–743, 743f
BLDC machines 743–744, 744f
description 741–742
energy storage applications 746–747, 747–748f
fuel cell 1093
kinetic energy 742, 742f
PM synchronous machines 744–745, 744f
squirrel cage induction machines 745, 745f
synchronous generators 746
wind speed 742, 742f
Wire bonds 160–162f, 161
Wireless electric vehicles (WEVs) 
battery problems 1113, 1114f
BEVs 
coil design 1118–1120
misalignments 1120, 1121f
static EV chargers 1118, 1118f
charging problems 1113–1114, 1114f
compensation circuits 
basic compensation circuit 1130, 1131f
I-SS and I-SP 1130, 1132f
LCC topology 1122f, 1130, 1132f
CPT 1117, 1117f
EMF cancellation methods 1132–1134, 1134–1135f
gyrator-based circuit analysis 1130, 1132–1133f
IPT 
equivalent circuit 1116, 1116f
Maxwell equations 1115–1116, 1116f
T model 1117
transformer model and M model 1116
magnetic mirror model 1130–1132, 1133f
RPEVs 
configuration 1121–1122, 1122–1123f
design goals 1122–1124, 1125f
temporary energy storage 1114, 1114f
segmentation of power rail 1134–1135, 1136f
stationary wireless charging 1114, 1114f
Wireless power transfer (WPT) 
applications 711
capacitive power transfer 712, 712f
inductive power transfer 712, 712f
inductive WPT systems applications 713
magnetic link design 
coil shape and alignment effect 719–720, 720f
coil winding effect 720–721
ferrite core effect 720, 720f
link dimension effect 719, 719f
with multiple coils 
multiple transmitters and single receiver 716–717, 717f
single transmitter and multiple receivers 717, 717f
single transmitter and receiver with multiple coils 716, 716f
optical link 711, 712f
power source converter 
class-D inverter 718, 718f
class-E inverter 718–719, 719f
radio-frequency waves 711, 712f
resonant inductive power transfer 712f
impedance reflection 714
mesh theory 714
operating field region 714, 714f
optimization objectives 715
system components 713–714, 713f
two-coil inductive WPT system  See (Two-coil inductive WPT system)
ultrasound 712, 712f
Wireless power transfer system (WPTS) 1121–1122, 1122–1123f
Wound rotor induction generators (WRIG) 809

X

79XX series fixed negative voltage regulator 667, 667t, 667f
78XX series fixed positive voltage regulator 666, 666f, 667t

Z

Zener diode 18
Zero-average-current error (ZACE) control 378, 378f
Zero-current (ZC) resonant switch 341, 342f
Zero-current switching (ZCS) 340
bidirectional flyback DC-DC converter 368, 369f
ZCS-QRCs 
family 343, 345f
full-wave buck-type DC-DC converter 343, 344f
half-wave buck-type DC-DC converter 342, 343f
parameters 342–343
vs. ZVS 347–348
Zero-current turn-off process 341
Zero-emission vehicle (ZEV) 1029
Zero-voltage (ZV) resonant switch 341–342, 342f
Zero-voltage switching (ZVS) 340
with clamped voltage 
full-bridge converter 349, 351f
half-bridge converter 349, 350f
phase-shifted converter with zero voltage transition 349, 352f
square-wave power 349
ZVS-QRC 
full-wave, quasi-resonant buck converter 346, 347f
half-wave quasi-resonant buck converter 344–346, 346f
vs. ZCS 347–348
Zero-voltage-switching capacitor-clamped inverter circuit 398, 398f
Zero-voltage-transition (ZVT) converters 
buck ZVT-PWM converter 355, 356f
conventional ZVT-PWM converters 355, 357f
phase-shifted converter 349, 352f
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.133.109.211