integral plus zero-pole compensation 1149
lag compensation 1149
lead compensation 1149
PI compensation 1149
PID notch filter type 1149–1150
transient behavior and stability 1149
Linear integrated circuit voltage regulators 
applications 668
basic connection 666, 666f
definition 665–666
LM337 adjustable negative voltage regulator 667–668, 667f
LM317 adjustable positive voltage regulator 667, 667f
79XX series fixed negative voltage regulator 667, 667t, 667f
78XX series fixed positive voltage regulator 666, 666f, 667t
78XX series regulator with external pass transistor 668, 668f
Linear power regulators 275
Linear regulators 
advantages and disadvantages 660–661
IC voltage regulators 
applications 668
basic connection 666, 666f
definition 665–666
LM337 adjustable negative voltage regulator 667–668, 667f
LM317 adjustable positive voltage regulator 667, 667f
79XX series fixed negative voltage regulator 667, 667t, 667f
78XX series fixed positive voltage regulator 666, 666f, 667t
78XX series regulator with external pass transistor 668, 668f
series voltage regulator 
circuit diagram 659, 660–661f, 661
current-limiting method 663, 664–665f
Darlington-connected amplifier 662, 662f
discrete component series regulator 662–663, 662f
emitter-to-collector voltage 661
op-amp series regulator 662–663, 663f
output voltage 661
overload protection 663
pass transistor 659
safe operation area 661
zener diode regulator 661
shunt voltage regulator 
circuit diagram 659, 660f, 663–664, 665f
circuit operation 663–664
common-emitter configuration in parallel 665, 666f
pass transistor 659
short-circuit protection 665
Linear series voltage regulator 
circuit diagram 659, 660–661f, 661
current-limiting method 663, 664–665f
Darlington-connected amplifier 662, 662f
discrete component series regulator 662–663, 662f
emitter-to-collector voltage 661
op-amp series regulator 662–663, 663f
output voltage 661
overload protection 663
pass transistor 659
safe operation area 661
zener diode regulator 661
Linear shunt voltage regulator 
circuit diagram 659, 660f, 663–664, 665f
circuit operation 663–664
common-emitter configuration in parallel 665, 666f
pass transistor 659
short-circuit protection 665
Line-commutated controlled rectifiers 
commutation 
DC voltage regulation curves 243, 243f
equivalent circuit for converter 243, 243f
overlap angle 242–243, 243–244f
overlap time 241–242
cycloconverters 251, 251–252f
dual converters 250–251, 250f
frequency link systems 264, 265f
Graetz bridge 
current waveforms 240, 241f
load average voltage 238–240
parallel connection 238–240
series connection 238–240, 239f
transformer rating 240
voltage waveforms 240, 240f
half controlled bridge converter 240–241, 241f
harmonic distortion 244
harmonic reduction 
current-controlled hunt active power filter 246, 246f
DC ripple reinjection technique 245–246, 246f
48-pulse operation 245–246, 246f
passive filter for one phase 244, 245f
twelve-pulse rectifier 244–245, 245f
harmonic standards 251, 252t
in HVDC power transmission 
vs. ac systems 247–248
asynchronous systems, interconnections 248
circuit and unilinear diagram 248, 249f
inverter side 249, 249f
rectifier side 248, 249f
in machine drives 
DC machine drive with six-pulse rectifier 246, 247f
self-controlled synchronous motor drive 246, 247f
supersynchronous cascade 247, 248f
torque control 247
power factor 243–244
six-pulse/double star rectifier 
AC current waveforms 236, 237f
direct voltage 235–236
with interphase connection 237–238, 237–239f
thyristor side windings 235–236, 236f
three-phase half-wave rectifier 
AC current waveforms 234–235, 236f
DC current waveforms 233, 235f
firing angle 233–234, 234f
gating delay 233, 234f
load average voltage 233–234
topology 233, 234f
Line-commutated single-phase controlled rectifiers 
applications 
single-phase dual-converter drive 217, 217f
two-quadrant dc drive 215, 217f
uninterruptible power supplies (UPS) 215, 216f
biphase half-wave rectifier 210, 212f
disadvantages 217
input current analysis 211–213, 213f
inverting mode operation 214–215, 216f
load time constant over current ripple 211, 212f
load voltage with resistive load 210
power factor 214
single-phase bridge rectifier 
fully controlled bridge rectifier 211, 213f
half-controlled bridge rectifier 211, 213f
voltage and current waveforms 211, 213f
single-phase half-wave rectifier 
with inductive-active load 210, 211f
load average voltage 209–210
with resistive-inductive load 210, 211f
single-thyristor rectifier with resistive load 209, 210f
thyristor commutation process 214, 215f
Line-frequency phase-controlled rectifiers 76
Line impedance stabilization network (LISN) 1070–1071, 1070–1071f, 1385, 1385f
Line-interactive UPS systems 644, 645f
Line-preferred UPS  See Standby UPS
Liquefied hydrogen 1095
Litz wire 
bundle-level skin effect 586–587, 586f
copper utilization factor 587, 587f
manufacturing process 585–586
proximity losses 586, 586f
strand-level external proximity effect 587, 587f
structure 585–586, 586f
LM337 adjustable negative voltage regulator 667–668, 667f
LM317 adjustable positive voltage regulator 667, 667f
Load-dump transient 1069
Load resonant converters (LRCs) 
parallel resonant converters 357–359, 361–363f
series-parallel resonant converter 359, 363f
series resonant converters 355–357, 359–361f
Lookup table (LUT) 1432
Low-dropout voltage (LDO) regulators 275
Low-pressure discharge lamps 688
Low-pressure sodium lamps 689
LPF 1348, 1348f
Lundell alternator model 
alternator output power vs. operating point 1078
permanent magnets 1079
simple electric model 1078, 1078f
structure and circuitry 1077, 1078f
switched-mode rectifier 1079–1080, 1080f
third-harmonic booster diodes 1079, 1079f
twin-rotor 1079

M

Mader-Horn linear model 697, 697f
Magnetomotive forces (MMFs) 1318
Mass rapid transit (MRT) 31
Matrix converters (MC) 7, 417–418
advantages 437–438
applications 
dc link VSC 451
EconoMac matrix converter module 450–451, 450f
generalized scalar PWM (GSPWM) technique 451
higher voltage transfer ratio 451
industrial drive 449–450, 450f
integrated matrix converter motor 451
matrix converter-fed adjustable speed drives 451
medium-voltage converter features 449–450
multilevel and multicell matrix converters 449–450, 450f
power electronic building block (PEBB) configuration 450–451
ride-through module 451
three-phase open-end winding ac machine drive 451
three-phase Z-source matrix converter 451, 452f
bidirectional fully controlled switches 437–438
commutation and protection issues 
bidirectional switch configurations 443
experimental waveforms 444, 444f
four-stepped commutation 443
ride-through capability 444
safe commutation scheme 443, 443f
semisoft current commutation 443, 444f
three-phase single-stage LC filter 444
voltage commutation scheme 443
high frequency linked single-phase to three-phase matrix converters 446–447, 447f
indirect matrix converters 446, 446f
multilevel matrix converter 
four-quadrant dc link H-bridge switching cells 444–445, 445f
MMMC topology 445–446, 445f
operation and control 
control implementation 443
controllable IDF 439
direct control method 443
space vector modulation (SVM) approach 439, 441–443, 442f
unity IDF 439
universal power converter 439
Venturini method 438t, 439–441
output phase voltage waveforms 439, 440f
power circuit diagram 437f, 438
single-phase matrix converters 446, 446f
sparse matrix converter 446, 446f
three-phase/three-phase matrix converter switching combinations 438–439, 438t
Maximum power point tracking (MPPT) 737–739, 738f
automated techniques 773
CMPPT 772
constant reference 772
function 771
load characteristics 788, 789f
PAO method 771, 771f
power feedback control 771
power/voltage characteristics 788, 788f
VMPPT 772
voltage feedback control 771
McMurray snubber 369–370, 371f
McMurray snubber with energy recovery 369–370, 371f
Membrane electrode assembly (MEA) 1100
Metal halide lamps 689
Metal hydrides 1095
Metal-oxide-semiconductor field-effect transistor (MOSFET) 
power transistor 24
Metal-oxide-semiconductor field-effect transistors (MOSFET) 1442
avalanche transistor driver 601, 602f
damping factor 600
electronic symbol 599–600, 600f
equivalent gate capacitor 600
gate resistor 601
ON MOSFET 600
off-state 600
parasitic nonlinear capacitances 600, 600f
structure 599–600, 600f
thermal modelling 1442
Metal-oxide-silicon field-effect transistor (MOSFET) 95
Miller effect 141
Model identification adaptive controllers (MIACs) 1108
Model predictive control (MPC) 
algorithm 1330, 1330f
cost function 1329–1330, 1330t, 1330f
NPC inverter 
cost function 1332f, 1333
discrete-time models 1331–1332, 1332f
future load back EMF 1332
simulation results 1331f, 1333, 1333t, 1333f
system model 1331, 1331–1332f, 1331t
RL load 1328–1329, 1329f
switching states 1328, 1328–1329f
33-level input switched inverter 
cost function 1335
discrete-time model 1335
mismatch filter inductance errors 1336–1337, 1337f
output current 1334–1335, 1335f
overview 1333, 1334t, 1334f
steady-state performance 1335, 1336f
system parameters 1335, 1336t
transient response 1336, 1336f
voltage 1335
three-phase VSI 1327–1328, 1328f
Model reference adaptive controllers (MRACs) 1108
Modular multilevel converter (MMC) 
advantages 396, 396f, 397t
circuit configuration 391, 391f
circulating current control 394, 395f
disadvantages 396–397
multicarrier modulation techniques 406, 407–409f
single-phase equivalent circuit 392, 392f
SM capacitor voltage balancing 393, 393–394f
states and current paths, half-bridge SMs 391–392, 392f
Module integrated inverter 804, 805f
Molten carbonate fuel cell (MCFC) 1097–1098, 1098f
MOS-controlled thyristor (MCT) 50, 604, 604f
cross section 67–68, 68f
DG-EST 68
equivalent circuit and switching characteristics 68, 69f
EST 68
vs. IGBT 68–69
overcurrent protection 70
paralleling 70
vs. power BJT 68–69
vs. power MOSFET 68–69
simulation model 70–71
snubbers 70, 70f
turn-on and turn-off 68–69
MOS turn-off (MTO) thyristor 71–72, 72f, 604, 604f
Motor control 
current source inverter 77, 79f
cycloconverter control 77, 79f
GTO chopper 77, 78f
inverter control 77
single-/three-phase converter control 77
square wave/PWM VSI 77, 79f
voltage source inverter 77
Motor drives 
block diagram 946–947, 947f
DC motor drives 
characteristics 947–949, 948f
commutator brush 947
drive system 952–953, 952–953f
operational factors 953
PWM switching converter drive 950–952, 951–952f
thyristor converter 949–950, 949–951f
GaA and PSO 
all-wheel electric vehicle drive system 1272–1273, 1273f
ANN 1280, 1280f
diesel-driven AC generator 1274
digital dynamic simulation model 1280–1289
dynamic error driven control 1276–1279
FLC system 1280, 1281t, 1281f
four-wheel permanent magnet DC motors 1270–1271
fuel cell stacks 1272f, 1274–1276, 1275–1276f
GPF scheme 1276
induction motor 1268–1269, 1268–1270f, 1271t, 1272f
PV array 1274, 1274f
renewable green energy sources 1271–1272
self-tuned variable structure sliding mode 1279–1280, 1280f
unified DC-AC utilization scheme 1273–1274
induction 
cycloconverter 959, 960f
slip power control 953f, 955–956, 955–956f
SPWM inverter 956–959, 957–959f
stator control 954–955, 954f
steady-state equivalent circuit 953–954, 953f
variable current–variable frequency (I–f) control 957f, 959–961, 960–961f
vector controls 961–966, 963–966f
permanent-magnet brushless DC 
AC machines 981, 981f
current/torque control 984–988, 984t, 985–989f
electric machine operation 981–982, 982f
electronic commutation 982–984, 982–983f, 984t, 985f
example 980
Hall sensors 984t, 987f, 988–990, 989–990t, 989f
Nd-Fe-B 980
power electronics 980
torque vs. speed control 981
permanent-magnet synchronous 
circumferential-magnet 975, 976f
interior-magnet 975, 975f
sine-wave motor 975f, 977–980, 977–980f
surface-magnet motor 970f, 975–977, 975–976f
power electronic converter-driven motor 946, 946t
servo drives 
control-loop design issues 993–996
examples 991
inner current loops 992–993
inner torque-control loops 993
performance of 991
sensors 993
servo motors 991–992, 991–992f
SR motor drive 
advantages 1005, 1005t
aligned position 1004
applications 1005
bifilar type inverter circuit 1006, 1006f
chopping-mode control 1010f, 1012, 1012f
design options 1005, 1006f
disadvantages 1005, 1005t
four-phase topology 1004, 1004f
linear model 1007–1011, 1007–1011f
magnetic saturation 1011–1012, 1011f
maximum speed 1005–1006
nonlinear model 1011–1012, 1011f
number of motor phases 1004f, 1005
number of power devices 1006
position sensing 1013–1014
single-pulse mode control 1011f, 1013
split-dc-supply-type inverter circuit 1006f, 1007
two-switch-inverter-type circuit 1006f, 1007
unaligned position 1004–1005, 1005f
stepper motor 
acceleration-deceleration profiles 1003–1004, 1004f
bifilar windings 1001–1002f, 1002
bipolar drive circuits 1002, 1002f
hybrid 998–999, 998f
microstepping 1002–1003, 1002–1003f
multistack variable-reluctance motor 997–998, 998f
permanent-magnet 999, 999f
single- and multi-step responses 1000–1001, 1000f
single-stack motors 996–997, 997f
unipolar drive circuits 1001–1002, 1001f
variable-reluctance motor 997f, 999, 999f
working principle 996
synchronous motor drives 
CSI drive 968–970, 969–970f
I is in phase with Ef 972, 972f
operation with I lagging Ef 971–972, 972f
operation with I leading Ef 972–973, 972–973f
steady-state equivalent-circuit 966–967, 966–967f
vector control 973–975, 974f
voltage-source inverter 967–968, 968f
synchronous reluctance 
block diagram 1018–1019, 1019f
control strategies and parameters 1017–1018, 1018f
conventional synchronous 1014
drive performance 1018
fiber-spinning industry 1014
mathematical modeling 1015f, 1016–1017, 1018f
maximum torque per ampere 1018
principles 1014–1015, 1015f
structure 1015–1016, 1016f
Multifunction ceramic (MFC) capacitors 1386
Multilevel inverters 
basic principle 317, 319f
current source-based multilevel topologies 
duality 320
switch states 320–321, 322t
topology 320–321, 322f
modulation techniques 
ASD based on three-phase three-level VSI topology 326, 326f
reactive power and current harmonics compensator 326–327, 326f
space-vector modulation 325–326, 325f
SPWM technique 321–325, 323–325f
voltage source-based multilevel topologies 317–318
cascade inverter 320, 321t, 321f
flying capacitor inverter 319–320, 320t, 320f
neutral-point-clamped inverter 318–319, 319t, 319f
Multilevel modular converter (MMC) 897, 898f
Multilevel power converters 
advantages 385
back-to-back diode-clamped converter 
series-parallel connection 398–399, 398f
six-level diode-clamped back-to-back converter structure 398–399, 399f
cascaded H-bridges 386
advantages 387
disadvantages 388
output phase voltage waveform 386, 387f
single-phase structure 386, 386f
three-phase wye-connection structure 387, 387f
with transformers 388, 388f
diode-clamped multilevel inverter 
advantages 389
application 389
disadvantages 389
line voltage waveform 389, 389f
three-phase six-level structure 388–389, 388f
voltage levels and switch states 388–389, 389t
disadvantages 385
flying-capacitor multilevel inverter 389–391, 390f, 390t
mixed-level hybrid multilevel converter 397, 398f
modular mutilevel inverter structures  See (Modular multilevel converter (MMC))
P2 topology 397, 397f
pulse-width modulation strategies  See (Pulse-width modulation (PWM))
soft-switched multilevel converter 398, 398f
Multimodular matrix converters (MMMCs) 445–446, 445f
Multiobjective genetic optimization search algorithm (MOGA) 1266, 1266f
Multiobjective optimization (MOO) 1265–1266
Multiobjective particle swarm optimization search algorithm (MOPSO) 1266–1268, 1267f
Multiphase AC-AC converters 
AC voltage controllers 
fully controlled voltage converters 462
phase-controlled converters 462
classification 462–463, 463f
cycloconverters 462
forced commutated cycloconverter 463–464, 508 See also Multiphase matrix converters (MPMC))
naturally commutated cycloconverter 463–464, 508
6-pulse cycloconverter 462–463
3-pulse cycloconverter 462–463
12-pulse cycloconverter 462–463
direct matrix converters 459
indirect matrix converter 459
matrix converters 462
multiphase frequency changers 463–464, 463f
Multiphase AC-DC converters 458–459
bidirectional system 461
classification 461, 461f
multipulse AC-DC converters 
five-phase controlled full wave bridge rectifier 467–470
five phase uncontrolled full wave bridge rectifier 464–467
multipulse rectifiers 470–473
single-way multiphase systems topologies 474–475
six-phase AC to DC converters 475–477
solid-state AC-DC converters 464
unidirectional system 461
Multiphase DC-AC converters 
carrier-based PWM 
experimental implementation 491
fifth harmonic injection PWM 488
offset/triangular zero-sequence injection PWM 488–489, 489f
space-vector PWM 489–491, 508
SPWM 488
with zero sequence signal 486–488
classifications 461–462, 462f
five-phase induction motor drive 462, 462f
five-phase voltage-source inverter 477–486
multiphase adjustable-speed drives 461–462
multiphase DC-AC inverters 461–462
Multiphase DC-AC inverters 461–462
cascaded H-bridge 462
diode clamped topology 462
five-phase VSI 462
flying capacitor topology 462
impedance-source inverters 462
quasi impedance-source inverters 462
seven-phase VSI 462
six-phase inverter 462
Multiphase DC-DC converters 
advantages 526
classification 461, 462f
coupled inductor 
modes of operation 524–526, 525f
ripple cancelation 524
transient response 524
two-level coupled inductor multiphase boost converter 524, 525f
multiphase boost converter 
modes of operation 523–524, 523f, 525f
topology 523, 523f
multiphase interleaved buck topology 
discontinuous conduction mode 520
inductor current cancelation 516–517, 518f
interleaved timing 516–517
modes of operation 517–519
n-phase interleaved buck converter 516–517, 517f
output current ripple with duty ratio 520–522, 521f
small-signal analysis 520, 521f
state-space averaging 519–520
two-phase buck converter topology 517, 518f
synchronous multiphase buck topology 522, 522f
voltage regulator module (VRM) 516
Multiphase matrix converters (MPMC) 459, 463–464 See also Multiphase AC-AC converters
carrier-based PWM scheme 509
direct-duty-ratio-based PWM 509, 515
direct multiphase matrix converters (DMMC) 508, 516
even-phase input and odd-phase output MC 514, 514f
future prospects 516
indirect multiphase matrix converters (IMMC) 508, 516
input voltage optimization 511–514f, 512–513
odd-phase input and even-phase output MC 513–514, 514f
simplified modulation strategy 514–515, 515–516f
sinusoidal carrier-based modulation 515
space-vector PWM technique 509, 515–516, 517f
target output voltages 511–512, 511–512f
voltage transfer ratio 
maximum voltage transfer ratio (VTRmax) 509
unutilized region 509–511, 510–511f, 511t
year-wise development 509, 509f
Multiphase power converters 
AC-AC converters  See (Multiphase AC-AC converters)
AC-DC converters  See (Multiphase AC-DC converters)
advantages 457–458
applications 457
DC-AC converters  See (Multiphase DC-AC converters)
DC-DC converters  See (Multiphase DC-DC converters)
multiphase DC-AC voltage-source inverter 459
multiphase drive 458
multiphase electric machines 458
multiphase generators 458–459
multiphase matrix converters 459–460
multiple three-phase drive 458, 458f
vs. single-phase converters 460
symmetrical n-phase motor 458
three-phase drive 458, 458f
Multiple string DC/DC converter 804, 804f
Multiple string inverter 804, 805f
Multipole synchronous generators 746, 747f
Multipulse rectifiers 
12-pulse parallel-type controlled rectifier 472–473, 473f
12-pulse series type controlled rectifier 471–472, 471f, 473f
uncontrolled/controlled rectifier 470, 470f
Multi-resonant converters (MRCs) 
buck ZVS-MRC 349, 352, 352–353f
constant frequency buck MRC 352–355, 354f
constant-frequency multiresonant switch 352–355, 354f
family 352, 354f
ZC-MR switch 349, 352f
ZV-MR switch 349, 352f
Multiterminal DC (MTDC) system 
control methods 865, 865f
parallel tap 864–865, 865f
series tap 864, 864f

N

Naturally commutated cycloconverter (NCC) 427, 436–437, 463–464
N-channel MCT 71
Nearest level control (NLC) 413–414
Neural-fuzzy controller (NFC) 
defuzzification layer 1240
input layer 1239
input membership layer 1239–1240, 1240f
network architecture 1239, 1239f
rule layer 1240
Neutral-point-clamped (NPC) inverter 
active filters 1343, 1346f
cost function 1332f, 1333
discrete-time models 1331–1332, 1332f
future load back EMF 1332
power electronic module 164
simulation results 1331f, 1333, 1333t, 1333f
system model 1331, 1331–1332f, 1331t
Nondominated sorting genetic algorithm (NSGA) 1266, 1266f
Nonlinear autoregressive moving average with exogenous input (NARMAX) model 1255–1257, 1257f
Nonresonant electronic ballasts 692–693, 693f
North American Electric Reliability Corporation (NERC) 729
Nuclear power plants 757, 757f

O

Ocean energy harvesting 
components 747–748
energy conversion 747
kinetic energy 748–749
near-shore technologies 
air-driven turbines based harvesting method 751–753, 753f
channel/reservoir/turbine based harvesting method 750–751, 752f
ocean tidal energy 753–754, 753–754f
off-shore technologies 
air-driven turbines based off-shore technologies 749–750, 749–750f
direct-drive permanent-magnet linear generator-based buoy applications 750, 751f
Salter cam method 750, 752f
potential energy 748–749
power electronic interfaces 754, 755f
system level diagram 748, 748f
Off-line UPS  See Standby UPS
Ohmic region 33
On-line electric vehicles (OLEVs) 
development of 1124–1125, 1125f
2G OLEV 1125–1126, 1126f
3G OLEV 1126–1127, 1127f
4G OLEV 1127–1128, 1128f
5G OLEV 1128–1130, 1129f
On-line UPS system 643–644, 643–644f

P

Packaging, thyristors 
capacitive coupling 54–55
characteristics 54
chemical degradation 55
CTE values 55, 55t
electric isolation 54
half-bridge module 55
long life and reliability 55
press packs 54, 54f
stud-mount 54, 54f
thermal conductivity 54, 55t
thermal performance 54
Parallel power factor corrector (PPFC) 
applications 541
circuit diagram 541, 543f
power process transfer principle 541, 544f
single-stage boost PPFC converter 541, 544f
single-stage flyback PPFC converter 541, 544f
system configurations 540f, 541
Parallel resonant converters (PRCs) 
continuous conduction mode 
ωS > ωr 359, 362–363f
ωS < ωr 359, 362f
discontinuous conduction mode 359, 362f
half-bridge configuration 357–359, 361f
Pareto front 1265
Pareto-optimal solution set 1265
Particle swarm optimization (PSO) 
vs. GA 1262, 1262t
motor drives 
all-wheel electric vehicle drive system 1272–1273, 1273f
ANN 1280, 1280f
diesel-driven AC generator 1274
digital dynamic simulation model 1280–1289
dynamic error driven control 1276–1279
FLC system 1280, 1281t, 1281f
four-wheel permanent magnet DC motors 1270–1271
fuel cell stacks 1272f, 1274–1276, 1275–1276f
GPF scheme 1276
induction motor 1268–1269, 1268–1270f, 1271t, 1272f
PV array 1274, 1274f
renewable green energy sources 1271–1272
self-tuned variable structure sliding mode 1279–1280, 1280f
unified DC-AC utilization scheme 1273–1274
SOPSO 
algorithm 1264–1265, 1265f
basic search method 1264, 1264f
numerical and qualitative problems 1263–1264
structure of 1264
Partners for Advanced Transit and Highways (PATH) program 1124, 1125f
Partnership for a new generation of vehicles (PNGV) 1084
Passive power factor correctors 
advantages 535
disadvantages 535
in high-power-line applications 533–534
inductive-input PF corrector 534, 534f
low-pass inductive filter 535, 535f
series-tuned LC harmonic filter 533–534, 534f
Periodical sampling (PS) method 258, 259f
Permanent-magnet alternating current (PMAC) motors 
algorithm 1312–1313, 1313f
back EMF 1309, 1309f
controller requirements 1311, 1312f
mathematical model 1309
motor-control system 1310–1311, 1310–1312f
torque generation 1309–1310, 1310f
Permanent-magnet brushless DC motor drives 
AC machines 981, 981f
current/torque control 
dead time and flyback diodes 987–988, 987–989f
H-bridge switching 986, 986f
hysteresis band 985, 985f
inductances 985
low resistance windings 984
position and current sensors 986, 987f
semiconductor switches 987, 987f
sequence of connections 984t, 986
switching losses 986
electric machine operation 981–982, 982f
electronic commutation 
conductor and rotor 982–983, 982f
“H-” bridge circuit 983, 983f
switching circuit 983–984, 983f, 984t, 985f
three-phases 983, 983f
windings 983, 983f
example 980
Hall sensors 
current sensing 984t, 987f, 989–990, 990t
operation of 988–989, 989t, 989f
switching signals 990, 990t
Nd-Fe-B 980
power electronics 980
torque vs. speed control 981
Permanent-magnet (PM) motor 1043
Permanent magnet synchronous generators (PMSG) 809
Permanent-magnet synchronous motor (PMSM) 
circumferential-magnet 975, 976f
controller requirements 1316, 1316f
control topology 1315–1316, 1315–1316f
interior-magnet 975, 975f
mathematical model 1314–1315, 1314f
rotor reference frame 1315
sine-wave motor 
back-emf waveforms 977, 977f
current-controlled drive 978–979, 979f
field weakening 979–980f, 980
IPMSM 975f, 978
MTPA characteristic 979, 979f
rotor-position sensors 978
speed-controlled drive 978, 978f
voltage and current limits 979f, 980
surface-magnet motor 
back emf 976, 976f
rotor configuration 975, 975f
sensorless operation 977
trapezoidal-wave motor 970f, 976–977, 976f
wind turbines 744–745, 744f
Perturb and observe (PAO) method 771, 771f
Phase-controlled single-phase AC voltage controller 
gating signal requirements 420, 421f
operation with RL-load 419–420, 419f
operation with R-load 419, 419f
power factor and harmonics 421, 421f
principle of operation 419
rms SCR current 420
θ vs. α curves 420, 420f
voltage control characteristics 420, 420f
Phase-controlled three-phase AC voltage controllers 422–425, 423f
Phase disposition PWM (PD-PWM) method 406, 409f
Phase-locked loop (PLL) 1350–1351, 1351f
Phase opposition disposition PWM (POD-PWM) method 406, 409f
Phosphoric acid fuel cell (PAFC) 1099
Photo voltaic array (PVA) 1274, 1274f
Photovoltaic (PV) systems 
applications 784
battery sizing 779
charge controllers 
DC–DC converter type charge regulators 788, 788f
series charge regulators 787, 787f
shunt charge regulators 787–788, 787f
DC-AC conversion 778
design procedures 778
dirt and dust 778
effects 734–735
fuel cell 1093
grid-connected system 
block diagrams 773, 773f
centralized inverters 773–774, 774f
components 773–774
grid synchronization 776
islanding mode 776–777
isolated converters 774, 775f
microinverter 773–774, 774f
string inverters 773–774, 774f
transformerless converters 774–776, 775f
hybrid PV systems 786, 786f
operation 769–771, 770f
power-conditioning unit 779
quality PV system criteria 778
solar cells 
azimuth, zenith, and elevation angles 769, 769f
current power characteristics 785, 785f
current vs. voltage 784–786, 784–785f
diode current 768
doping technique 768
electric field effect 768, 768f
equivalent circuit 768, 768f, 784, 784f
fill factor 768
maximum power output 768
open-circuit voltage 768
PV generator terms 785, 785f
PV module circuit model 769, 769f
schematic diagram 784, 784f
short-circuit current 768
silicon semiconductor materials 785
temperature effects 785, 785f
stand-alone system  See (Stand-alone PV system)
temperature 778
Piezoelectric ultrasonic motors 1073–1074, 1074f
P-i-N diode 164, 165f
PI/PD-like fuzzy controller 
architecture of 1222, 1223f
fuzzy-PD controller 1224–1225, 1225f
fuzzy-PI system 1223–1224, 1223–1224f
saturation equation 1222–1223
Plasma-based ion implantation (PBII) loads 611, 611f
Plug-in hybrid electric vehicles (PHEVs) 1024, 1032–1033, 1091
P&O/hill-climbing control 789
Point of common coupling (PCC) 530
Polymer electrolyte fuel cell (PEMFC) 1092–1093, 1098–1099, 1098f
Poly-phase diode rectifiers 
six-phase parallel bridge rectifier 
circuit diagram 189, 189f
design parameters 188t, 189
voltage waveforms 189, 189f
six-phase series bridge rectifier 
circuit diagram 188, 188f
design parameters 188t, 189
six-phase star rectifier 
basic circuit 187, 187f
design parameters 188, 188t
Potential barrier 15
Power bipolar transistor 
aluminum metallization 25
BJT 24
buck-boost converter 31, 31f
chopper driver with DC motor 31, 31f
duty cycle 31
MRT 31
PSPICE model 32, 32t
characteristics 21–24
circuit symbols 25, 25f
collector and base currents 25
copper metallization 25
emitter current 24–25
IGBT 24
MOSFET 24
planar NPN BJT structure 24, 24f
power module 166
safe operation area 27, 27f
static characteristics 
absolute voltage limit mechanism 25
active region 26
base current, base-emitter voltage 25, 26f
collector current, collector-emitter voltage 25–26, 26f
Darlington-connected BJTs 26, 26f
primary and second breakdown 26–27
quasi saturation 26, 26f
saturation region 26
switching characteristics 
forward base drive current 28, 29f
with inductive load 28, 28f
under resistive load 27, 28f
transistor base driver circuits 
Baker’s clamp 29, 29f
base command without negative power supply 29, 29f
isolated base drive circuit 29–30, 30f
nonisolated base driver 29, 29f
proportional base drive circuit 30–31, 30f
transformer-coupled base drive with tertiary winding transformer 30, 30f
turn-off snubber network 31, 31f
vertical structure 25, 25f
Power Donut 840
Power electronic circuit 2–3
Power electronic module 
advantages 157–158
design guidelines and considerations 
analog/digital controller 172–173
bypass capacitor 171, 171f
current sensing 172–173
electric design 171
gate driver design 171–172, 172f
gate Kelvin contacts 172, 172–173f
snubbers and clamps 172–173
switching converter specifications based module selection 171
thermal design 171
voltage sensing 172–173
diode/thyristor rectifier 
CIB module 163, 165f
half-bridge, full-bridge, or three-phase power module 163, 164f
NPC module 164
PFC module 164
single-phase full-bridge 163–164, 163f
disadvantage 158
vs. discrete power devices 158, 158f
electro-thermo-mechanical device 157
IGBT half-bridge power module 
cross section 160, 160f
equivalent circuits 158–159, 159f
external components 159–160, 159f
physical structure 158, 159f
manufacturing process 160f
baseplate 162–163
DBC substrate 161–162
die attach 160–161
semiconductor chips 160, 161f
wire bonds 160–162f, 161
power semiconductor devices 
BJT 166
IGBT 166, 166f
MOSFET 165, 165f
P-i-N diode 164, 165f
Schottky diode 164–165, 165f
SiC 166
thyristor 166
reliability 
bond wire lifting 170, 170f
power cycling 170–171
reliability tests 170–171
solder fatigue 170, 170f
thermal cycling 170
thermomechanical stress 170
thermal management 
air cooling 168, 168f
double-sided cooling 169, 169f
equivalent thermal network 167–168, 167f
liquid cooling 168, 168f
physical integration 166–167
power dissipation 166–167
power losses 166–167
thermal cycling 167
Power electronics 
Ampere’s magnetic circuit law 576, 576f
analysis and design tools 
Kirchhoff’s voltage and current laws 8, 8–9f
lossless filter design 11
semiconductor devices 9–10, 9t
switching functions 10–11
switch matrix 7–8
applications 1–2
corrosion sensor 12
dc-dc converters 1
hybrid/fully electric vehicle 11–12
inverters 1
rectifiers 1
characteristics 
electric power conversion 2, 2f
reliability objective 3
switch, efficiency objective 2–3
system reliability 2
definition 1
development needs 819–820
energy conversion and management 1
energy systems, electronics, and control 1, 2f
Faraday’s magnetic circuit law 575–576, 575–576f
history 2
hybrid energy systems 820–824
magnetic materials 
amorphous and nanocrystalline materials 572
anomalous loss 573
B-H plot 572–573, 572f
eddy current losses 573
ferrite and powdered materials 572
fringing field effects 575
hot-spun melt magnetic tape materials 575
hysteresis loss 573
iron-based silicon-steel materials 572
magnetic coercivity 572–573
magnetic saturation 573
Mn-Zn ferrites 574–575
nanoparticle-based materials 572
Ni-Zn grades 574–575
power loss density values 574–575, 574f
properties 574t
rapid cooling methods 575
relative permeability 572–573, 575
Steinmetz equation 573–574
tape wound amorphous core materials 572
temperature stability 574
total core loss per unit volume 573
method of energy balance 
average power 6
energy transfer switching circuit 5–6, 6f
polarity reverser 6
switching converter 6–7, 6f
power supplies 4
PV systems 784–806
reluctance and inductance 576–577, 576–577f
single-switch circuits 4–5
transformer design 
basic electric circuit 577, 577f
copper loss 578, 581
core loss 578, 578f, 581
core selection 581
core window area product 579
effective resistance vs. layer thickness 583–584, 583f
fringing effect 584–585, 584–585f
high-frequency Litz wire 585–587, 586–587f
interleaved windings 587, 588f
physical dimensions 577f
proximity effect 582–583, 582–583f
push-pull converter 579–580, 580f, 584, 584f
round conductor 582, 582f
skin effect 582, 582f
winding losses 578, 578f
winding selection 581
window utilization factor 578
wind power systems 806–820
Power Electronics Building Block (PEBB) 1399
Power electronics converters (PEC) 
battery charger 
charging schemes 1054–1055, 1055f
inductive charging 1059–1060, 1059–1060f
integrated charger 1058, 1058–1059f
multistage conversion 1055, 1055f
on-board and off-board charger 1056
single-stage conversion 1055, 1055f
type-I charging 1055–1056
type-II charging 1055–1056
type-III charging 1055–1056
unidirectional and bidirectional charger 1056–1058, 1056–1058f
classification 1044, 1045f
electrified vehicle 
configuration 1047–1048, 1047f
fuel-cell stack 1048–1049, 1048f
plug-in HEV 1047f, 1048
traditional batteries 1048
EPS 
architecture 1044, 1045f
bidirectional dc/dc converter 1044–1047, 1045f
propulsion inverter motor 1046, 1046f
ESS and HES 
active configuration 1050, 1051f
cascaded configuration 1051, 1051f
multiple input configuration 1052–1054, 1052–1054f, 1054t
parallel configuration 1051–1052, 1052f
passive configuration 1050, 1050f
power flow 1049–1050
onboard power processing 1044
operating characteristics 1044, 1044t
requirements 1044
vehicle application 1044, 1045t
Power Electronics Society (PELS) 1398
Power electronic system 2–3
Power factor (PF)  See also Power factor correction (PFC)
for current/voltage distorted waveforms 530–531
definition 530–531
instantaneous drawn current 530–531
instantaneous power source voltage 530–531
Power factor correction (PFC) 
active power factor correctors 
boost corrector 536, 537f
buck-boost corrector 536, 537f
buck corrector 535–536, 536f
Cuk corrector 537, 538f
flyback corrector 538, 538f
forward converter 538–539, 539f
forward-flyback converter 538–539, 539f
Sepic corrector 537, 538f
single-stage quasi Z-source corrector 539–540, 540f
Zeta corrector 537, 538f
CCM shaping technique 553t
AC-DC PFC converter 544, 546f
ACM strategy 546–547, 547f
charge control 549–550, 551f
constant frequency peak current control 549, 549–550f
current waveform 541, 545f
high-power applications 544
hysteresis control 549, 551f
I2 average current mode control 547–548, 547f
multiloop controls 544
nonlinear-carrier control 550–551, 551f
variable frequency peak current control 548–549, 548f
voltage control 551–552, 552f
circuit topologies 542f, 543
control techniques 542f, 543
CRM techniques 
advantages 561–563
current waveform 541, 546f
diode reverse-recovery problem 543
disadvantages 561–563
hysteretic control 561
in low-power applications 561–563
VOT control 561–563
cycle control technique 564
DCM input technique 559t
AC-DC power supply 559–560
advantage 552–553
current waveform 541, 545f
low- to medium-level power application 544
PFC capabilities 553–559
single-stage single-switch converter 542
DPFC 564
energy balance 532–533, 532–533f
interleaved method 564
module 164
one-stage scheme 540–541, 540f
passive power factor correctors 
advantages 535
disadvantages 535
in high-power-line applications 533–534
inductive-input PF corrector 534, 534f
low-pass inductive filter 535, 535f
series-tuned LC harmonic filter 533–534, 534f
second-harmonic-injected method 563
single-phase input power waveform 541, 543f
two-stage scheme 540–541, 540f
waveform synthesis method 564
Power handling rating 3
Power IGBT 166, 166f
Power MOSFET 165, 165f
applications 36, 36f
basic structure, vertical N-channel MOSFET 32, 32f
PSPICE model 36, 37t
SOA 36, 36f
static characteristics 33, 33f
active/saturation region 33
cutoff region 33
ohmic region 33
switching characteristics 
drain-to-source voltage 34
equivalent circuit model 33, 33f
input transfer function characteristics 34, 34f
ohmic region, equivalent circuit 34, 34f
turn-off analysis 34f, 35–36, 36f
turn-on analysis 34–35, 34–35f
voltage-controlled current source 33–34
symbols 33, 33f
vertical MOSFET with N-channel created 32, 32f
Power MOS transistors 
cross section, DMOS transistor 90, 90f
cross section, VMOS transistor 90, 90f
disadvantage 90–91
equivalent diagram 90, 91f
IGBT 90–91, 91f
Power rectifier diode 18
Power semiconductor devices 
equivalent electric circuit, thermal design 45–46, 46f
equivalent resistances, nomenclature 45, 46t
equivalent voltage nodes, nomenclature 45, 46t
heatsink thermal design 46–47, 46t, 47f
Power supplies 
definition 659
filtering 659, 660f
rectification 659, 660f
regulation 
linear regulators  See (Linear regulators)
switching regulators 659–661, 660f, 668–684
Power switches 
hard-switching 339, 340f
ideal and practical switching waveforms 339–340, 340f
ZCS 340
ZVS 340
Power thyristor 166
Power transfer (PT) 1114–1115, 1115f
PP technology  See Pulsed power (PP) technology
Predictive control 
controlled parameters, future behavior 1325–1326
cost function 1326, 1374
current reference generator 1374–1375, 1375f
dc voltage converter 1375
discrete-time model 1374
equivalent circuit 1372, 1374f
MPC 
algorithm 1330, 1330f
cost function 1329–1330, 1330t, 1330f
RL load 1328–1329, 1329f
switching states 1328, 1328–1329f
33-level input switched inverter 1333–1337, 1334–1337f, 1334t, 1336t
three-phase VSI 1327–1328, 1328f
performance evaluation 1375–1376, 1376–1377f
power converters 1325
system prediction model 1326
working principle 1326, 1327f
Predictive optimum controllers 
αβ currents 1206
dc capacitor voltage unbalance 1206
non-linear fast predictive optimum control 1205–1206
non-linear predictive optimum control 1203–1205
quadratic cost functional 1206–1207
switching power converter 1202–1203
Proportional-integral (PI) 1149, 1308, 1308f
Proportional-integral derivative (PID) 1149–1150
Proton-exchange membrane (PEM) 1092–1093
Proton exchange membrane fuel cells (PEMFCs) 758, 758f
Pulsed power forward-type circuit 
circuit diagram 615, 615f
circuit operation 615–616
high-voltage pulse generation 616–617
pulse amplitude 616
pulse mode 615–616
reset mode 616
reset voltage 616
reverse voltage 616, 617f
safety mode 616
theoretical key waveforms 615, 615f
Pulsed power (PP) technology 
applications 593–594
capacitive-type loads 611
in capacitor charging applications 
high-voltage dc power supply with charging resistor 635, 635f
resonance-charging technique 635–636, 635f
switching converters 636–637, 636–637f
definition 593
inductive-type loads 611
PBII loads 611, 611f
power semiconductors 
generalized cascodes 607, 608f
high-voltage PIN diodes 594–599
high-voltage thyristors 603, 603f
IEGT 602–603
IGBT 602, 602f
LTT 603, 603f
maximum volt-ampere capabilities of current 594, 595f
MOSFET 599–601
nonideal characteristics 594
semiconductor parallel stacks 607–608, 609f
semiconductor series stacks 605–607, 606–608f
wide band gap power semiconductor devices 608–610
resistive-type loads 610–611
solid-state PP topologies  See (Solid-state PP topologies)
Pulse-width modulation (PWM) 11
audio amplifier 1176–1179, 1177–1178f
carrier-based PWM techniques, multilevel 
line-line output voltage 400, 401f
modulation index, level utilization 400–404, 403f, 404t
multicarrier techniques, MMC 406, 407–409f
SFO-PWM 400, 402–403f
subharmonic PWM 400, 402–403f
switching frequency at low modulation indices 404–406, 404t, 405–406f
carrier-based PWM technique, three-phase CSIs 
bipolar PWM technique 296–297, 299f
modulation index 296
normalized carrier frequency 296
SPWM scheme 296
unipolar PWM technique 297
classification 399–400, 399f
DC link current 301–302
generation 1306–1307, 1307f
lighting system 1073
modular multilevel inverter 413–414, 413f
multilevel space vector PWM 
line-line redundancies 411, 411t
multiplexer model, diode-clamped six-level inverter 406–410, 410f
redundant switching states 411–412
sinusoidal reference and inverter output voltage states 411, 411f
voltage space vectors 406–410, 410f
selective harmonic elimination 
bipolar programmed PWM 413
fundamental switching frequency 412
output waveform, virtual stage PWM control 412–413, 412f
unipolar programmed PWM 413
unipolar switching output waveform 412–413, 413f
sinusoidal PWM, three-phase VSIs 
ac output line voltage 304
dc link voltage 304
ideal waveforms 302–303, 303f
ninth harmonic in phase 302–303
with zero sequence signal injection 304, 305–306f
switching power converters 1148–1149, 1148f
Push-pull converter 279, 279f
PV systems  See Photovoltaic (PV) systems
PWM dc-dc push-pull converter 279, 279f
PWM phase-to-phase and phase-to-neutral voltages 256, 257f
PWM voltage-source inverter (PWM-VSI) 
active filters 1342
advantages 933
communication 935–936
control strategies 934–935, 935t
vs. cycloconverter and LCI 933t
features 923–924, 924t
medium voltage PWM-VSI 933–934, 934f, 934t
PWM techniques 936, 936f
PWM waveforms 
bearing current 937
common mode reactor 938
effect on cables 936
effect on EMC/insulation/earthing 936–937
effect on motor 936
electromagnetic compatibility 937, 938t
motor insulation 937
output line reactor 937–938
PWM (dV/dt) filter 938
RC network at motor terminals 938
sine-wave filter 938, 939t
supply front-end bridges 938–940, 939t

Q

Quadrature-encoder-pulse (QEP) 1316, 1316f
Quasi impedance-source inverters (qZSI) 462
Quasi-resonant converters (QRCs) 
EP-QR converters, boost PFC circuit 
design procedure 365–368
drain-source voltage and current 365, 367f
hard-switched circuit 361, 365f
idealized waveforms 361, 366f
operating modes 361–365, 366f
soft-switched DC-DC flyback converter 368, 369f
soft switching 361, 365f
ZCS bidirectional flyback DC-DC converter 368, 369f
ZCS-QRC 
family 343, 345f
full-wave buck-type DC-DC converter 343, 344f
half-wave buck-type DC-DC converter 342, 343f
parameters 342–343
vs. ZVS 347–348
ZVS-QRC 
full-wave quasi-resonant buck converter 346, 347f
half-wave quasi-resonant buck converter 344–346, 346f
vs. ZCS 347–348
Quasi-resonant soft-switched inverter 
circuit operation 
DC voltage source vs. front-stage interface circuit 376
equivalent circuits 376, 377f
waveforms 376, 376f
design considerations 377–378, 378f
digital time control 
gating signals, timing diagrams 379, 379f
implementation 379, 379f
switch voltage waveforms 379, 379f
ZACE control concept 378, 378f

R

Random pulse width modulation 
insertion loss vs. frequency graph 1389f, 1390
nonrandom technique 1391–1392, 1391f
switching period 1390–1391
VD-RPWM 1392–1393, 1392f
Random weight change (RWC) algorithm 1255
Rankine cycle 732, 733f
Real MOSFET 
Sw1 and Sw2 OFF and Rpot at maximum resistance 43–45, 44–45f
Sw1 and Sw2 ON and Rpot at maximum resistance 43, 44f
switching characteristics 39, 39f
Sw1 ON and Sw2 OFF and Rpot at maximum resistance 
drain-source voltage and gate-source voltage 40, 41f
turn-off process 40, 41f
turn-on process 40, 40f
Vg source and collector-emitter voltage 40, 40f
Sw1 ON and Sw2 OFF and Rpot at minimum resistance 
drain-source voltage and the gate-source voltage 42, 43f
turn-off process 42, 42f
turn-on process 42, 42f
Real-time interface (RTI) 1375
Reduced surface field (RESURF) concept 135–136, 135–136f
Regulation standards 
application-specific 1397
components 1398
IEEE Std 1662-2016 1398–1399
IEEE Std 1676-2010 1399
IEEE Std 1826-2012 1399
organization 1397–1398
Renewable energy sources (RES) 783
Resonant converters 
classification 341
control integrated circuits 
phase-shifted ZVT FB Circuit 361, 365f
QRCs and MRCs 359–360, 364f
vs. conventional PWM converters 340
load resonant converters 
parallel resonant converters 357–359, 361–363f
series-parallel resonant converter 359, 363f
series resonant converters 355–357, 359–361f
multi-resonant converters 
buck ZVS-MRC 349, 352, 352–353f
constant frequency buck MRC 352–355, 354f
constant-frequency multiresonant switch 352–355, 354f
family 352, 354f
ZC-MR switch 349, 352f
ZV-MR switch 349, 352f
non-dissipative active clamp network 355, 358f
quasi-resonant converters 
EP-QR converters 361–368
ZCS-QRCs 342–343, 347–348
ZVS-QRC 344–348
ZVT converters 
buck ZVT-PWM converter 355, 356f
conventional ZVT-PWM converters 355, 357f
Resonant DC link inverters 371
active-clamp resonant-link inverter 373–374, 373f
circuit complexity and frequency spectrum 371–372
constant DC link voltage 372
with low voltage stress 
advantages 374
circuit diagram 374, 374f
normal mode 374
operating modes 374–376, 375f
timing program 374–376, 374f
pulsating DC link inverter 372
for AC-DC-AC system 372, 372f
advantages 373
disadvantages 373
equivalent circuit 372, 373f
phase and line voltages 372, 373f
with resonant switch 372, 372f
with resonant tank 372, 372f
quasi-resonant soft-switched inverter 
circuit operation 376–377, 376–377f
design considerations 377–378, 378f
digital time control 378–379, 378–379f
switched-mode front-stage circuit 372
Resonant electronic ballasts 
current-fed resonant ballasts 693–694, 693f
voltage-fed resonant ballasts 694–695, 694f
Resonant inductive WPT system 712f
impedance reflection 714
mesh theory 714
operating field region 714, 714f
optimization objectives 715
system components 713–714, 713f
two-coil inductive WPT system  See (Two-coil inductive WPT system)
Resonant inverters 
current-fed parallel resonant inverters 
equivalent circuit 698, 698f
input current 698
operating waveforms 698, 698f
output voltage 698–699, 699f
parallel resonant circuit 700, 700f
phase angle 699
resonant tank natural frequency 700
self-oscillating current-fed push-pull electronic ballast 700, 700f
total harmonic distortion 699, 699f
voltage stress 699
design methodology 704–705, 704–705f
voltage-fed resonant inverters 
equivalent circuits 700, 701f
input voltage 700
operating waveforms 700, 701f
parallel-loaded resonant circuit 702–703, 702f
series-loaded resonant circuit 701–702, 701f
series-parallel-loaded resonant circuit 703–704, 703f
Resonant pole inverters (RPIs) 371
ARCPI 379–380, 381f
one leg of 379–380, 380f
single-phase RPI 
circuit diagram 379–380, 380f
operating modes 379–380, 381f
timing diagram 379–380, 380f
Resonant switch  See Resonant converters
Restricted frequency changer 436–437
Restricted switch 9–10
Reverse-bias safe operating area (RBSOA) 27, 27f
Ribbon bonding 161, 162f
Ripple factor (RF) 180–181
Road powered electric vehicles (RPEVs) 
dynamic inductive charging 
configuration 1121–1122, 1122–1123f
design goals 1122–1124, 1125f
temporary energy storage 1114, 1114f
Root-mean-square (rms) 233–234
Rotary UPS systems 645–647, 646f
Rotor resistance chopper control 819

S

Safe operation area (SOA) 
power bipolar transistor 27, 27f
power MOSFET 36, 36f
reverse-biased second breakdown 21–24
Salter cam method 750, 752f
Schottky barrier diodes 609
Schottky diodes 18, 164–165, 165f
Selective harmonic elimination (SHE) 289
three-phase CSIs 
chopping angles 314, 315f
gating pattern generator 314, 315f
ideal waveforms 314, 316f
three-phase VSIs 304–305, 307f
bipolar SHE technique 299, 299–300f
unipolar SHE technique 299–301, 300–301f
Self-oscillating current-fed push-pull electronic ballast 700, 700f
Semiconductor diode 
application 
freewheeling 21, 22–23f
rectifiers 20–21, 20f, 22f
voltage multiplier 21, 24f
classification 
power rectifier diode 18
Schottky diodes 18
small signal diode 18
zener diode 18
dynamic characteristics 
current during turn-off process 18, 19f
dynamic behavior, voltage and current 17, 17f
real reverse recovery behavior 18, 18f
reverse recovery time 18
small signal diode current and voltage 18, 20f
switching characteristics 17, 17f
time intervals 17–18
forward-biased diode 15
junction diode structure 15, 16f
potential barrier 15
PSPICE model 21, 24t
reversed-biased diode 15
series and parallel connection, power diodes 18–20, 20f
static characteristics 
breakdown voltage 17
conduction resistance 17
equivalent circuit 17, 17f
forward voltage 17
of ideal diode 16, 16f
realistic diode structure 16, 16f
reverse current 17
symbol 15–16, 16f
threshold voltage 15
Semiconductor opening switches (SOS) diode 596–597
Semiconductor series stacks 
diode reverse voltages 606, 606f
equivalent model 606, 606f
RSCS parallel snubber 607
steady-state balancing 606, 606–607f
Series charge regulators 787, 787f
Series-parallel resonant converter 359, 363f
Series resonant converters (SRCs) 
continuous conduction mode 
with ωr < ωS 356–357, 360f
0.5ωr < ωS < ωr 355, 360f
discontinuous conduction mode with ωS < 0.5ωr 355, 360f
half-bridge configuration 355–357, 359f
M vs. γ 357, 361f
Series-tuned LC harmonic filter 533–534, 534f
Servo drives 
control-loop design issues 
integral controller 994, 994f
proportional controller 993, 993f
representations and control 994–996, 994–996f
transient velocity feedback controller 993–994, 994f
examples 991
inner current loops 992–993
inner torque-control loops 993
performance of 991
sensors 993
servo motors 991–992, 991–992f
Seven-phase voltage source inverter 
square wave mode 
14-step operation 491–498, 495–497f, 496t, 498t
modeling using space-vector approach 491–492
model transformation, decoupling matrix 500–504, 504f
PWM mode of operation 498–500, 499t, 501–503t
SVPWM method 
in linear modulation range 504
low-order harmonics elimination 504
simulation results 505
with sinusoidal output 505–507, 505t, 505–508f
Shunt charge regulators 787–788, 787f
Silicon avalanche sharpener (SAS) 599
Silicon carbide (SiC) 
BJT 
base-emitter voltage 115
blocking voltage 114
boundary carrier densities 116–117
charge distribution, N collector 115, 115f
charge distribution, P-base region 114, 115f
current gain 114
depletion widths 116
displacement currents 116
electron concentration 115
electron current component 114
hole current 114
one-dimensional structure 114, 114f
voltage drop 114–116
figures of merit 
for devices 101, 102t
for materials and technology 100–101, 100t
flow diagram 96, 96f
IGBT 
avalanche breakdown 118
carrier distribution 122
charge distribution 120, 120f
continuity equation 119, 121
current spreading layer 119
depletion width 118–119, 121
hole current 120
Miller capacitance 121
N-channel IGBTs 117–118
one-dimensional cross section 119, 119f
ON-resistance 117
P-channel IGBTs 117–118
punch-through effect 118–119
P-well displacement current 121
reverse injection current 120
turn-OFF transient 117
voltage drop 118, 122
JFET 
advantages 111
cascode configuration 112, 112f
depletion width 113
FOM 114, 114t
gate-to-drain capacitance 113
LCJFET 111, 112f
parameters 114, 114t
VCJFETs 112–113, 112f
junction barrier Schottky diode 108–109, 108f
lightly doped drift region thickness 143–145, 145f
MOSFETs 109–111, 109t, 110f
PiN diode 
advantage 104
carrier charge density 105
carrier distribution 106–107, 107f
carrier dynamics 105
conductivity modulation 104
current transport equations 106
depletion layer voltages 106
depletion widths 106
displacement currents 106
electric field 106
electron current 104
intrinsic carrier concentration 107–108
junction voltage 105, 107
level-3 model 104
recombination parameter 107
structure 104, 104f
voltage drop 104, 106–107
polytypes 97
power semiconductor devices 166
Schottky diode 
advantage 102
barrier heights 103, 103t
drift region resistance 103
forward voltage 102
maximum electric field 104
ohmic contact resistance 103
reverse leakage current 103
structure 102, 102f
thermionic emission model 104
total specific resistance 103
tunneling coefficient 104
thyristor 
continuity equation 124
emitter recombination 123
GTOs 122–125
hole concentration 124
lumped-charge method 125
N+ 4H-SiC substrates 123
one-dimensional ambipolar diffusion equation 124–125
reverse injection current 124
schematic structure 123, 123f
SCRs 122
voltage drop 125
Silicon-controlled rectifier (SCR) 50, 603, 603f See also Gate turn-off thyristor (GTO); Static induction thyristor
Silicon (Si) power devices 
BJTs 96
coefficient of thermal expansion 100
critical electric field 98–99, 99f
flow diagram 96, 96f
GTOs 96
IGCTs 96
intrinsic carrier concentration 99
physical properties 97–98, 98t
saturated drift velocity 99
Schottky diodes 96
thermal stability 99–100
Simulation Program with Integrated Circuit Emphasis (SPICE) 1442
Single-ended isolated flyback regulators 
circuit diagram 668–669, 670f
circuit elements 668–669
continuous-mode flyback regulators 671–672, 671f
discontinuous-mode flyback regulators 669–671
steady-state waveforms 668–669, 670f
Single-ended isolated forward regulators 
circuit diagram 673, 674f
continuous-mode operation 673
current components, primary winding 673, 675f
discontinuous mode 673
duty cycle 675
magnetizing current 673
maximum collector current 675
maximum collector voltage 675
output inductor current 675
output voltage 675
steady-state waveforms 673, 674f
total primary current 673
Single objective genetic optimization search algorithm (SOGA) 1262–1263, 1263f
Single-objective (SO) optimization 1279
Single objective particle swarm optimization search algorithm (SOPSO) 
algorithm 1264–1265, 1265f
basic search method 1264, 1264f
numerical and qualitative problems 1263–1264
structure of 1264
Single-phase AC-AC voltage controller 
basic power circuit 418, 418f
bidirectional full-wave symmetrical control 418, 418f
with on/off control 421–422, 422f
phase-controlled single-phase AC voltage controller 419–421, 419–420f
unidirectional half-wave asymmetrical voltage control 418, 418f
Single-phase boost rectifier 
bridgeless boost rectifier 223, 224f
CCM 
control system 219, 220f
dc voltage control loop dynamic behavior 220, 221f
inductor current behavior 219, 220f
input current and voltage 219–220, 220f
DCM 
active current waveform shaping principle 220–222
operating principle with fixed switching frequency 220–222, 221–223f
operating principle with variable switching frequency 220–222, 221f
power circuit and equivalent circuit 218, 219f
power factor correction 
with control integrated circuit 225, 226f
electronic ballast with 225, 227f
resonant structures 
conduction losses 222, 223f
switching losses 222, 223f
ZCS 223, 223f
ZVS 223, 223f
working principle 218–219, 219f
Single-phase controlled rectifiers 
with capacitive filter 
circuit diagram 217, 218f
current harmonics 217–218, 218t, 218f
input voltage and current waveforms 217, 218f
classification 209, 210f
line-commutated single-phase controlled rectifiers 
applications 215–217
biphase half-wave rectifier 210–211, 212f
commutation 214, 215f
disadvantages 217
input current analysis 211–213, 213f
inverting mode, operation 214–215, 216f
power factor 214
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.116.234.46