References 345
improved back-off efficiency,” in IEEE Topical Meeting on Silicon Mono-
lithic Integrated Circuits in RF Systems , Jan 2013, pp. 6–8.
[217] A. Scuderi, C. Santagati, M. Vaiana, F. Pidala, and M. Papa ro, “ Bal-
anced sige pa module for multi-band and multi-mode cellular-phone ap-
plications,” in IEEE International Solid-State Circuits Conference, Feb
2008, pp. 5 72–637.
[218] G. Liu, P. Haldi, T.-J. K. Liu, and A. Niknejad, “Fully integrated CMOS
power amplifier with efficiency enhancement at power back-off,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 3, pp. 600–609, March 2008.
[219] D. Chowdhury, C. Hull, O. Degani, Y. Wang, and A. Niknejad, “A fully
integrated dual-mode highly linear 2.4 ghz CMOS power a mplifier fo r
4g WIMAX applications,” IEEE Journal of Solid-State Circuits, vol. 44,
no. 12, pp. 3393–3402, Dec 2009.
[220] G. Hau and M. Singh, “Multi-mode WCDMA power amplifier module
with improved low-power efficiency using stage-bypass,” in IEEE Radio
Frequency Integrated Circuits Symposium, May 2010, pp. 163–166.
[221] J. Kim, Y. Yoon, H. Kim, K. H. An, W. Kim, H.-W. Kim, C.-H. Lee, and
K. Kornegay, “A linear multi-mode CMOS power amplifier with discrete
resizing and concurrent power combining structure,” IEEE Journal of
Solid-State Circuits, vol. 46, no. 5, pp. 1034–1048, May 2011.
[222] B. Koo, T. Joo, Y. Na, and S. Hong, “A fully integrated dual-mode
CMOS power amplifier for WCDMA applications,” in IEEE Interna-
tional Solid-State Circuits Conference, Feb 2012, pp. 82–84.
[223] H. Jeon, Y. Park, Y.-Y. Huang, J. Kim, K.-S. Lee, C.-H. Lee, and
J. Kenney, “A triple-mode balanced linear CMOS power amplifier using
a switched-quadrature coupler,” IEEE Journal of Solid-State Circuits,
vol. 47, no. 9, pp. 2019–2032, Sept 2012.
[224] W. Fei, H. Yu, K. S. Yeo, X. Liu, and W. M. Lim, A 44-to-60ghz,
9.7dbm p1db, 7.1% pae powe r amplifier with 2d distributed power com-
bining by metamaterial-based zero-phase-shifter in 65nm CMOS,” in
IEEE MTT-S International Microwave Symposium, June 2012, pp. 1–3.
[225] W. Fei, H. Yu, W. M. Lim, and J. Re n, “A 53-to-73ghz power amplifier
with 7 4.5mw/mm2 output power density by 2d differential power com-
bining in 65nm CMOS,” in IEEE Radio Frequency Integrated Circuits
Symposium, June 2013, pp. 271–274.
[226] F. Shirinfar, M. Nariman, T. Sowlati, M. Ro fougaran, R. Rofougaran,
and S. Pamarti, “A fully integr ated 22.6dbm mm-wave pa in 40nm
CMOS,” in IEEE Radio Frequency Integrated Circuits Symposium, June
2013, pp. 2 79–282.
346 References
[227] T. Quemerais, L. Moquillon, J. Fournier, P. Benech, and V. Huard,
“Design-in-reliable millimeter-wave power amplifier s in a 65-nm CMOS
process,” IEEE Transactions on Microwave Theory and Techniques,
vol. 60, no. 4, pp. 1079–1085, April 2012.
[228] S. Aloui, Y. Luque, N. Demirel, B. Leite, R. Plana, D. Belot, and E. Ker-
herve, “Optimized power combining technique to design a 20db gain,
13.5dbm ocp1 60ghz power amplifier us ing 6 5nm CMOS technology,” in
IEEE Radio Frequency Integrated Circuits Symposium, June 2012, pp.
53–56.
[229] I. A. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-
dispersive dielec tric mirrors for future wireless terahertz c ommunication
systems,” IEEE Microwave and Wireless Components Letters, vol. 18,
no. 1, pp. 67–69, Jan. 2008.
[230] F. Schuster, H. Videlier, A. Dupret, D. Coquillat, M. Sakowicz, J. Ros-
taing, M. Tchagaspanian, B. Giffard, and W. K nap, A bro adband THz
imager in a low-cost CMOS technology,” in IEEE International Solid-
State Circuits Conference, Feb. 2011, pp. 42–43.
[231] H. Tang, G. Yang, J. Chen, W. Hong, and K. Wu, “Millimeter-wave and
terahertz transmission loss of CMOS process-based substrate integra ted
waveguide,” in IEEE MTT-S Int ernational Microwave Symposium, June
2012, pp. 1 –3.
[232] W. Fei, H. Yu, Y. Shang, and K. S. Yeo, “A 2D distributed power
combining by metamaterial-based zero-phase-shifter for 60GHz power
amplifier in 65nm CMOS,” IEEE Transactions on Microwave Theory
and Techniques, vol. 61 , no. 1, pp. 505–516, Jan. 2013.
[233] G. Q. Luo, Z. F. Hu, Y. Liang, L. Y. Yu, and L. L. Sun, Development of
low profile cavity backed crossed slot antennas for planar integration,”
IEEE Transactions on Antennas and Propagation, vol. 5 7, no. 10, pp.
2972 –2979, Oct. 2009.
[234] S. Hu, Y.-Z. Xiong, B. Zhang, L. Wang, T.-G. Lim, M. Je, and M. Madi-
hian, “A SiGe BiCMOS transmitter/receiver chipset with o n-chip SIW
antennas for terahertz applications,” IEEE Journal of Solid-State Cir-
cuits, vol. 47, no. 11, pp. 2654–2664, 2012.
[235] H. Tang, G. Yang, J. Chen, W. Hong, and K. Wu, “Millimeter-wave and
terahertz transmission loss of CMOS process-based substrate integra ted
waveguide,” in IEEE MTT-S Int ernational Microwave Symposium, June
2012, pp. 1 –3.
[236] F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate
integrated waveguide,” IEEE Transactions on Microwave Theory and
Techniques, vol. 53, no. 1, pp. 66–73, 2005.
References 347
[237] J. George, M. Deepukumar, C. K. Aanandan, P. Mohanan, and K. Nair,
“New compa ct micr ostrip antenna,” Electronics Letters, vol. 32, no. 6,
pp. 508–509, 1996.
[238] D. Kim, J. K im, J.-O. P louchart, C. Cho, D. Lim, W. Li, and R. Trzcin-
ski, “A 75GHz PLL front-end integration in 65nm SOI CMOS technol-
ogy,” in IEEE Symposium on VLSI Circuits, June 2007, pp. 174–175.
[239] G. Liu, R. Berenguer , and Y. Xu, “A MM-wave configur able VCO using
MCPW-based tunable inductor in 65-nm CMOS,” IEEE Transactions
on Circuits and Systems II, vol. 58, no. 12, pp. 842–846, Dec. 2011.
[240] C.-J. Lee, K. Leong, and T. Itoh, “Comp osite right/left-handed trans-
mission line based compact resonant antennas for RF module integra-
tion,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 8,
pp. 2283–2291, Aug. 20 06.
[241] R. Liu, A. Degiron, J. J. Mock, and D. R. Smith, “Negative index ma-
terial composed of electric and magnetic resonato rs,” Applied Physics
Letters, vol. 90, no. 26 , pp. 263 504 1–3, June 20 07.
[242] D. R. Smith, S. Schultz, P. Markoˇs, and C. M. Soukoulis, “Determination
of effective permittivity and permeability of metamaterials from r eflec-
tion and transmission coefficients,” Phys. Rev. B, vol. 65, p. 195104,
April 2002.
[243] X. Chen, T. M. Grzeg orczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Ro-
bust method to retrieve the constitutive effective parameters of meta-
materials,” Phys. Rev. E, vol. 70, p. 016608, July 2004 .
[244] K.-H. Tsai and S.-I. Liu, “A 104-GHz phase-locked loop using a VCO at
second pole frequency,” IEEE Transactions on VLSI Syst ems, vol. 20,
no. 1, pp. 80–88, Jan. 2012.
[245] A. M. Niknejad and H. Hashemi, mm-Wave Silicon Technology 60 GHz
and Beyond, A. M. Niknejad and H. Hashemi, Eds. Springer, 2008.
[246] D. Kim, J. Kim, J .-O. Plouchart, C. Cho, W. Li, D. Lim, R. Trzcinski,
M. Kumar, C. Norris, and D. Ahlgren, “A 70GHz manufacturable com-
plementar y LC-VCO with 6.14GHz tuning range in 65nm SOI CMOS,”
in IEEE International Solid-State Circuits Conference, Feb. 2007, pp.
540–620.
[247] O. Momeni and E. Afshari, High power terahertz and millimeter-wave
oscillator design: A systematic approach,” IEEE Journal of Solid-State
Circuits, vol. 46 , no. 3, pp. 583– 597, March 2011.
[248] B. Razavi, “A millimeter-wave circuit technique,” IEEE Journal of
Solid-State Circuits, vol. 43, no. 9, pp. 2090–2098, Sept. 2008.
348 References
[249] L. Fra nc a-Neto, R. Bishop, and B. Bloechel, “64 GHz and 100 GHz
VCOs in 90 nm CMOS using optimum pumping method,” in IEEE
International Solid-State Circuits Conference, Feb. 2004, pp. 444–538.
[250] E. Ojefors, U. Pfeiffer, A. Lisa uskas, and H. Roskos, “A 0.65 THz fo cal-
plane array in a quarter-micron CMOS process technology,” IEEE Jour-
nal of Solid-State Circuits, vol. 44, no. 7, pp. 1968–19 76, July 2009.
[251] M. Uzunkol and G. Re beiz, “A low-noise 150-210 GHz detector in 45
nm CMOS SOI,” IEEE Microwave and Wireless Components Letters,
vol. 23, no. 6, pp. 309–311, June 201 3.
[252] M. Uzunkol, O. Gurbuz, F. Golc uk, and G. Rebeiz, “A 0.32 THz SiGe
4×4 imaging array using high-efficienc y on-chip antennas,” IEEE Jour-
nal of Solid-State Circuits, vol. 48, no. 9, pp. 2056–20 66, Sept. 2013.
[253] S.-W. Chu and C.-K. Wang, “An 80 GHz wide tuning rang e push-push
VCO With -boosted full-wave r ectification technique in 90 nm CMOS,”
IEEE Microwave and Wireless Components Letters, vol. 22, no. 4, pp.
203–205, April 2012.
[254] D. Cai, Y. Shang, H. Yu, and J. Ren, “An 80GHz on-chip metama-
terial resonator by differential transmission line loaded with split ring
resonator,” IET Electronics Let ter, vol. 48, no. 18, pp. 1128–1130, Aug.
2012.
[255] J. R. Whitehead, Super- Regenerative Receivers, 1st ed. U.K.:Cambridge
Univ. Press, 1950.
[256] F. Moncunill- Ge niz , P. Pala-Schonwalder, and O. Mas-Casals, “A
generic approach to the theory of sup erregenerative reception,” IEEE
Transactions on Circuits and Syst ems I, vol. 52, no. 1, pp. 54–70, Jan.
2005.
[257] J. Bohorquez, A. Chandrakasan, and J. Dawson, Frequency-domain
analysis of super-regenerative amplifiers,” IEEE Transactions on Mi-
crowave Theory and Techniques, vol. 57, no. 12, pp. 2882–2894, Dec.
2009.
[258] Y. Shang, H. Yu, D. Cai, J. Ren, and K. S. Yeo, “Design of high-Q
millimeter-wave oscilla tor by differential transmission line loaded with
metamaterial resonator in 65nm CMOS,” IEEE Transactions on Mi-
crowave Theory and Techniques, vol. 61, no. 5, pp. 1892–1902, May
2013.
[259] F. Caster, L. Gilreath, S. Pan, Z. Wang, F. Capolino, and P. Heyda ri,
“A 93-to-113GHz BiCMOS 9-element imaging array receiver utilizing
spatial-overlapping pixels with wideband phase and amplitude control,”
in IEEE International Solid-State Circuits Conference, Feb. 2013, pp.
144–145.
References 349
[260] M. Tytgat, M. Steyaert, and P. Reyna ert, “A 186 to 212GHz
downconverter in 90nm CMOS,” Journal of Infrared, Millimeter, and
Terahertz Waves, vol. 33, no. 11, pp. 1085 –1103, 2012. [Online].
Available: http://dx.doi.org/10.1007/s10762-012-9930-x
[261] M. C. Wanke, M. A. Ma ngan, and R. J. Foltynowicz, Atmospheric Prop-
agation of THz Radiation. OSTI, Nov. 2005.
[262] T. Schneider, A. Wiatrek, S. Preussler, M. Gr igat, a nd R.-P. Braun,
“Link budget analysis for terahertz fixed wireless links,” IEEE Trans-
actions on Terahertz Science and Technology, vol. 2, no. 2, pp. 250–256,
2012.
[263] S. Hu, Y. Z. Xiong, L. Wang, D. Hou, and T. G. Lim, “ A low-cost high-
gain antenna array and its integration with active circuits,” in IEEE
Electrical Design of Advanced Packaging Systems Symposium (EDAPS),
Dec. 2010, pp. 1–4.
[264] F. Vecchi, S. Bozzola, M. Pozzoni, D. Guermandi, E. Te mporiti, M. Re-
possi, U. Decanis, A. Mazzanti, and F. Svelto, A 60GHz receiver with
13GHz bandwidth for Gbit/s wire less links in 65nm CMOS,” in IEEE
International Conference on IC Design and Technology, June 2010, pp.
228–231.
[265] B. Razavi, “A 300-GHz fundamental osc illator in 65-nm C MOS technol-
ogy,” in IEEE Symposium on VLSI Circuits, June 2010, pp. 113–114.
[266] T. Mitomo, R. Fujimoto, N. Ono, R. Tachibana, H. Hoshino, Y. Yoshi-
hara, Y. Tsutsumi, and I. Seto, A 60-GHz CMOS r eceiver front-
end with frequenc y synthesizer,” IEEE Journal of Solid-State Circuits,
vol. 43, no. 4, pp. 1030–1037, April 2008.
[267] Y. Jin, J. Long, and M. Spirito, “A 7dB NF 60GHz-band millimeter-
wave transconductance mixer,” in IEEE Radio Frequency Integrated Cir-
cuits Symposium, June 2011, pp. 1–4.
[268] A. Tang, Q. Gu, Z. Xu, G. Virbila, and M.-C. F. C hang, “A Max 349
GHz 18.2mW/pixel CMOS inter-modulated regenerative receiver for
tri-color mm-wave imaging,” in IEEE MTT-S International Microwave
Symposium, June 2012, pp. 1–3.
[269] R. Han and E. Afshari, “A 260GHz broadband source with 1.1mW
continuous-wave radiated power and EIRP of 15.7dBm in 65nm CMOS,”
in IEEE International Solid-State Circuits Conference, Feb. 2013, pp.
138–139.
[270] R. C. Daniels and R. W. Heath, “60 ghz wireless communications:
Emerging requirements and des ign rec ommendations,” IEEE Vehicular
Technology Magazine, vol. 2, no. 3, pp. 41–50, 2007.
..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
13.58.51.228