REFERENCES

  1. R. C. Rosenberg and D. C. Karnopp, Introduction to Physical System Design. McGraw-Hill, New York, 1987.
  2. M. F. O’Flynn and G. Moriarity, Linear Systems. Harper & Row, New York, 1987.
  3. E. Routh, Advanced Dynamics of a System of Rigid Bodies, Macmillan, London, 1905.
  4. A. Hurwitz, “Uber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen realen Theilen besitzt.” Math. Ann. 46, 273 (1895).
  5. H. Nyquist, “Regeneration theory.” Bell Syst. Tech. J. 11, 126 (1932).
  6. R. Sarcedo and E. E. Shinng, Introduction to Continuous and Digital Control Systems. Macmillan, New York, 1968.
  7. MATLABTM for MS-DOS Personal Computers User’s Guide. Control System Toolbox. Math Works, Inc., Natick, MA, 1997.
  8. H. Chestnut and R. W. Mayer, Servomechanisms and Regulating System Design, 2nd ed., Vol. 1. Wiley, New York, 1959.
  9. S. M. Shinners, “Minimizing servo load resonance error with frequency selective feedback.” Control Eng. 51, 51–56 (1962).
  10. R. C. Dorf, Modern Control Systems, 5th ed. Addison-Wesley, Reading, MA, 1989.
  11. C. H. C. Leung, Quantitative Analysis of Computer Systems. Wiley, New York, 1988.
  12. S. M. Shinners, “Which computer—Analog, digital or hybrid?” Mach. Des. 43, 104–111 (1971).
  13. N. Stern and R. A. Stern, Introducing QuickBASIC 4.0 and 4.5: A Structured Approach. Wiley, New York, 1989.
  14. S. A. Hovanessian and L. A. Pipes. Digital Computer Methods in Engineering. McGraw-Hill, New York, 1969.
  15. T. Ward and E. Bromhead, FORTRAN and the Art of PC Programming. Wiley, New York, 1989.
  16. D. D. McCracken and W. J. Dorn, Numerical Methods and FORTRAN Programming: With Applications in Engineering and Science. Wiley, New York, 1964.
  17. E. I. Organick, A FORTRAN IV Primer. Addison-Wesley, Reading, MA, 1966.
  18. S. Gill, “A process for the step-by-step integration of differential equations in an automatic digital computing machine” Proc. R. Soc. London, Ser. A 193, 407–433 (1948).
  19. H. H. Rosenbrick and C. Storey, Computational Techniques for Chemical Engineers, Pergamon, Oxford, 1966.
  20. R. W. Hamming, Numerical Methods for Scientists and Engineers. McGraw-Hill, New York, 1962.
  21. H. M. James, N. B. Nichols, and R. S. Phillips, Theory of Servomechanisms. McGraw-Hill, New York, 1947.
  22. A Papoulis, The Fourier Integral and Its Application. McGraw-Hill, New York, 1962.
  23. W. R. Evans, “Graphical analysis of control systems.” Trans. Am. Inst. Elect. Eng. 67, 547 (1948).
  24. W. R. Evans, “Control system synthesis by root locus method.” Trans. Am. Inst. Electr. Eng. 69, 66 (1950).
  25. W. R. Evans, Control System Dynamics, McGraw-Hill, New York, 1954.
  26. C. S. Chang, “Analytical Method for Obtaining the Root Locus with Positive and Negative Gain.” IEEE Trans. Automatic Control, AC-10, 92–94 (1965).
  27. G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 3rd ed., Addison-Wesley, Reading, MA, 1994.
  28. K. Ogata, Modern Control Engineering, 3rd ed., Prentice Hall, Englewood Cliffs, NJ, 1997.
  29. J. Lipow, A Computer Algorithm for Obtaining the Root Locus. National Biscuit Co., New York, 1962.
  30. M. J. Remec, “Saddle-points of a complete root locus and an algorithm for their easy location on the complex frequency plane.” Proc. Natl. Electron. Conf. 21, 605–608 (1965).
  31. H. M. Paskin, “Automatic computation of root loci using a digital computer.” Unpublished M.S. thesis, Air Force Institute of Technology, Dayton, OH, March 1962.
  32. S. M. Shinners, “How to approach the stability analysis and compensation of control systems.” Control Eng. 25(5), 62–67 (1978).
  33. J. M. Maciejowski, Multivariate Feedback Design. Addison-Wesley, Reading, MA, 1989.
  34. D. K. Frederick, C. J. Herget, R. Kool, and M. Rimvall, ELCS: The Extended List of Control Software, February, No. 3, 1987.
  35. Proceedings of the Third IEEE Symposium on Computer-Aided Control Systems Design, Arlington, VA, September 1986, IEEE, New York, 1986.
  36. M. Jamshidi and C. J. Herget, eds. Advances in Computer-Aided Control Systems Engineering, North-Holland, Amsterdam, 1985.
  37. C. J. Herget and A. L. Laub, eds. Special issue on computer-Aided control system design. IEEE Control Systems Magazine, 2(4) (Dec.), 2–37 (1982).
  38. A. Grace, A. J. Laub, J. N. Little, and C. Thompson, Control System Toolbox for Use with MATLABTM User’s Guide. MathWorks, Inc., Natick, MA, 1990
  39. R. E. Klein, “Using bicycles to teach system dynamics.” IEEE Control Syst. Mag. 9(3), 4–9 (1989).
  40. G. F. Franklin and J. D. Powell, “Digital control laboratory courses.” IEEE Control Syst. Mag. 9(3), 10–13 (1989).
  41. M. Mansour and W. Schaufelberger, “Software and laboratory experiments using computers in control education.” IEEE Control Syst. Mag. 9(3), 19–24 (1989).
  42. J. M. Boyle, M. P. Ford, and J. M. Maciejowski “Multivariable Toolbox for use with MATLAB.” IEEE Control Syst. Mag. 9(1), 59–65 (1989).
  43. K. Gustafson, M. Lundh, and M. Lilja, “A set of MATLAB routines for control system analysis and design.” In Proceedings of the 1991 Advances in Control Education Conference, Boston, MA. IEEE, New York, 1991.
  44. D. Atherton and T. C. Yang, “Programs for teaching nonlinear control in MATLAB.” In Proceedings of the 1991 Advances in Control Education Conference, Boston, MA. IEEE, New York, 1991.
  45. Ctrl-C® User’s Guide. Systems Control Technology, Palo Alto, CA, 1990.
  46. CODAS-II. Dynamical Systems, Inc., Tucson, AZ.
  47. Programm CC, Version 4. Systems Technology, Inc., Hawthorne, CA.
  48. ACETTM (Advanced Control Engineering Techniques). Information & Control Systems, Hampton, VA.
  49. S. M. Shinners, Techniques of System Engineering. McGraw-Hill, New York, 1967.
  50. B. Blake, “Four views on train control.” Control Eng. 11, 62–68 (1964).
  51. I. Nakamura and S. Yamazaki, “On the centralized system for train operation and traffic control—Including signaling and routing information.” Railw. Tech. Res. Inst. 5, 9–11 (1964).
  52. W. Crochetiere, L. Vovovnik, and J. B. Resnick, “The design of control systems for electronic activation of human limb movement.” In Proceedings of the 1967 Joint Automatic Control Conference, pp. 51–57.
  53. J. Goclowski and A. Gelb, “Dynamics of an automatic ship steering system.” In Proceedings of the 1966 Joint Automatic Control Conference, pp. 294–304.
  54. S. M. Shinners, “Modeling of human operator performance utilizing time series analysis.” IEEE Trans. Syst., Man Cybernet. SMC-4(5), 446–458 (1974).
  55. J. Camp and M. J. Campbell, “Aircraft power steering.” Sperry Rand Eng. Rev. 24, 37–40 (1971).

* According to Liapunov, this is asymptotic stability—the type of stability preferred by control-system engineers. This is defined and discussed in detail in Section 10.20 on Liapunov’s stability criterion.

*The proof of the Nyquist stability criterion is contained in Appendix B.

*The majority of the solutions in this book have been obtained using MATLAB. The corresponding M-files that are part of my Modern Control System Theory and Design Toolbox can be retrieved free from The MathWorlts, Inc. anonymous FTP server at ftp://ftp.mathworks.com/pub/books/shinners.

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
18.191.125.109