20.3 Double-Angle Formulas

  • Formula for sin 2α • Formulas for cos 2α • Formula for tan 2α

If we let β = α in the sum formulas for sine, cosine, and tangent (given in Section 20.2), we can derive the important double-angle formulas:

sin(α + α) = sin(2α) = sin α cos α + cos α sin α = 2 sin α cos αcos(α + α) = cos α cos α − sin α sin α = cos2 α − sin2 αtan(α + α) = tan α + tan α1 − tan α tan α = 2 tan α1 − tan2 α

Then using the basic identity sin2 x + cos2 x = 1 ,  other forms of the equation for cos 2α may be derived. Summarizing these forms, we have

sin 2α = 2 sin α cos α
(20.21)
cos 2α = cos2 α − sin2 α
(20.22)
 = 2 cos2 α − 1
(20.23)
 = 1 − 2 sin2 α
(20.24)
tan 2α = 2 tan α1 − tan2 α
(20.25)

These double-angle formulas are widely used in applications of trigonometry, especially in calculus. They should be recognized quickly in any of the above forms.

CAUTION

Note carefully that sin 2α IS NOT 2 sin α . 

EXAMPLE 1 Using double-angle formulas

  1. If α = 30 °  ,  we have

    cos 60 °  = cos 2(30 ° ) = cos2 30 °  − sin2 30 °  = (32)2 − (12)2 = 12using Eq. ( 20.22) 
  2. If α = 3x ,  we have

    sin 6x = sin 2(3x) = 2 sin 3x cos 3x using Eq.  ( 20.21) 
  3. If 2α = x ,  we may write α = x / 2 ,  which means that

    sin x = sin 2(x2) = 2 sinx2cosx2using Eq.  ( 20.21) 
  4. If α = π6 ,  we have

    tanπ3 = tan 2(π6) = 2 tanπ61 − tan2(π6) = 2(3 / 3)1 − (3 / 3)2 = 3using Eq.  ( 20.25) 

EXAMPLE 2 Simplification using cos 2α formula

Simplify the expression cos2 2x − sin2 2x . 

Since this is the difference of the square of the cosine of an angle and the square of the sine of the same angle, it fits the right side of Eq. (20.22). Therefore, letting α = 2x ,  we have

cos2 2x − sin2 2x = cos 2(2x) = cos 4x

EXAMPLE 3 Using sin 2α formula—area of land

To find the area A of a right triangular tract of land, a surveyor may use the formula A = 14c2sin 2θ ,  where c is the hypotenuse and θ is either of the acute angles. Derive this formula.

In Fig. 20.15, we see that sin θ = a / c and cos θ = b / c ,  which gives us

A right triangle with area Ay has leg b, leg ay, and hypotenuse c. Opposite leg ay is angle theta.

Fig. 20.15

a = csin θandb = ccos θ

The area is given by A = 12ab ,  which leads to the solution

A = 12ab = 12(csin θ)(c cos θ) = 12c2sin θ cos θ = 12c2(12sin 2θ)using Eq.  ( 20.21)  = 14c2sin 2θ

In using Eq. (20.21), we divided both sides by 2 to get sin θ cos θ = 12sin 2θ . 

If we had labeled the upper acute angle in Fig. 20.15 as θ ,  we would have a = ccos θ and b = csin θ .  Using these values in the formula for the area gives the same solution.

EXAMPLE 4 Verifying values

  1. Verifying the values of sin 90 ° , using the functions of 45 ° , we have

    sin 90 °  = sin 2(45 ° ) = 2 sin 45 °  cos 45 °  = 2(22)(22) = 1using Eq. ( 20.21) 
  2. Using Eq. (20.25), tan 142 °  = 2 tan 71 ° 1 − tan2 71 °  .  Using a calculator, we have

    tan 142 °  =  − 0.7812856265and2 tan 71 ° 1 − tan2 71 °  =  − 0.7812856265

EXAMPLE 5 Evaluation using sin 2α formula

If cos α = 35 for a fourth-quadrant angle, from Fig. 20.16(a) we see that sin α =  − 45 .  Thus,

Two standard angles.

Fig. 20.16

sin 2α = 2 sin α cos αEq.  ( 20.21)  = 2( − 45)(35) =  − 2425

In Fig. 20.16(b), angle 2α is shown to be in the third-quadrant, verifying the sign of the result. (cos α = 3/5 ,  α = 307 °  ,  2α = 614 °  ,  which is a third-quadrant angle.)

EXAMPLE 6 Simplification using cos 2α

Simplify the expression 21 + cos 2x . 

21 + cos 2x = 21 + (2 cos2 x − 1)using Eq.  ( 20.2)  = 22 cos2 x = sec2 xusing Eq.  ( 20.23) 

EXAMPLE 7 Trig identity—calculator verification

Prove the identity sin 3xsin x + cos 3xcos x = 4 cos 2x . 

Because the left side is the more complex side, we change it to the form on the right:

sin 3xsin x + cos 3xcos x = sin 3x cos x  + cos 3x sin xsin x cos xcombining fractions = sin(3x + x)12sin 2x← using Eq.  ( 20.9) ← using Eq.  ( 20.21)  = 2 sin 4xsin 2x = 2(2 sin 2x cos 2x)sin 2xusing Eq.  ( 20.21)  = 4 cos 2x

We can check this identity by comparing the graphs of

y1 = (sin 3x) / (sin x) + (cos 3x) / (cos x)andy2 = 4 cos 2x . 

Figure 20.17 shows the graph of y2 (in red) being plotted over the graph of y1 (in blue).

A curve oscillates about y = 0 with amplitude 4, period pi, and maximum (pi, 4). Part of the curve is red and part is blue.

Fig. 20.17

EXERCISES 20.3

In Exercises 14, make the given changes in the indicated examples of this section and then solve the resulting problems.

  1. In Example 1(d), change π6 to π3 and then evaluate tan2π3 . 

  2. In Example 2, change 2x to 3x and then simplify.

  3. In Example 5, change 3/5 to 4/5 and then evaluate sin 2α . 

  4. In Example 6, change the  +  in the denominator to  −  and then simplify the expression on the left.

In Exercises 58, determine the values of the indicated functions in the given manner.

  1. Find sin 60 °  by using the functions of 30 ° .

  2. Find sin 120 °  by using the functions of 60 ° .

  3. Find tan 120 °  by using the functions of 60 ° .

  4. Find cos 60 °  by using the functions of 30 ° .

In Exercises 914, use a calculator to verify the values found by using the double-angle formulas.

  1. Find sin 100 °  directly and by using functions of 50 ° .

  2. Find tan 184 °  directly and by using functions of 92 ° .

  3. Find cos 96 °  directly and by using functions of 48 ° .

  4. Find cos 276 °  directly and by using functions of 138 ° .

  5. Find tan2π7 directly and by using functions of π7 . 

  6. Find sin 1.2π directly and by using functions of 0.6π . 

In Exercises 1518, evaluate the indicated functions with the given information.

  1. Find sin 2x if cos x = 45 (in first quadrant).

  2. Find cos 2x if sin x =  − 1213 (in third quadrant).

  3. Find tan 2x if sin x = 0.5 (in second quadrant).

  4. Find sin 4x if tan x =  − 0.6 (in fourth quadrant).

In Exercises 1930, simplify the given expressions.

  1. 6 sin 5x cos 5x

  2. 4 sin2 x cos2 x

  3. 1 − 2 sin2 4x

  4. 4 tan 4θ1 − tan2 4θ

  5. 2 cos212x − 1

  6. 4 sin12x cos12x

  7. 8 sin2 2x − 4

  8. 6 cos 3x sin 3x

  9. sin 6θcos 3θ

  10. cos4 u − sin4 u

  11. sin 3xsin x − cos 3xcos x

  12. cos 3xsin x + sin 3xcos x

In Exercises 3140, prove the given identities.

  1. cos2 α − sin2 α = 2 cos2 α − 1

  2. cos2 α − sin2 α = 1 − 2 sin2 α

  3. cos x  − tan x sin xsec x = cos 2x

  4. 2 + cos 2θsin2 θ = csc2 θ

  5. sin 2θ1 + cos 2θ = tan θ

  6. 2 tan α1 + tan2 α = sin 2α

  7. 1 − cos 2θ = 21 + cot2 θ

  8. cos3 θ + sin3 θcos θ + sin θ = 1 − 12 sin 2θ

  9. ln(1 − cos 2x) − ln(1 + cos 2x) = 2 ln tan x

  10. log(20 sin2 θ + 10 cos 2θ) = 1

In Exercises 4144, verify each identity by comparing the graph of the left side with the graph of the right side on a calculator.

  1. tan 2θ = 2cot θ − tan θ

  2. 1 − tan2 xsec2 x = cos 2x

  3. (sin x  + cos x)2 = 1 + sin 2x

  4. 2 csc 2x tan x = sec2 x

In Exercises 4562, solve the given problems.

  1. Express sin 3x in terms of sin x only.

  2. Express cos 3x in terms of cos x only.

  3. Express cos 4x in terms of cos x only.

  4. Express sin 4x in terms of sin x and cos x.

  5. Find the exact value of cos 2x + sin 2x tan x . 

  6. Find the exact value of cos4 x − sin4 x − cos 2x . 

  7. Simplify: log(cos x  − sin x) + log(cos x  + sin x) . 

  8. For an acute angle θ ,  show that 2 sin θ > sin 2θ . 

  9.  Without graphing, determine the amplitude and period of the function y = 4 sin x cos x .  Explain.

  10. Without graphing, determine the amplitude and period of the function y = cos2 x − sin2 x . 

  11. The path of a bouncing ball is given by y = (sin x  + cos x)2 .  Show that this path can also be shown as y = 1 + sin 2x .  Use a calculator to show that this can also be shown as y = | sin x  + cos x|  . 

  12. The equation for the trajectory of a missile fired into the air at an angle α with velocity v0 is y = x tan α − g2v02 cos2 α x2 .  Here, g is the acceleration due to gravity. On the right of the equal sign, combine terms and simplify.

  13. The CN Tower in Toronto is 553 m high, and has an observation deck at the 335-m level. How far from the top of the tower must a 553-m high helicopter be so that the angle subtended at the helicopter by the part of the tower above the deck equals the angle subtended at the helicopter below the deck? In Fig. 20.18 these are the angles α and β . 

    A diagram.

    Fig. 20.18

  14. The cross section of a radio-wave reflector is defined by x = cos 2θ ,  y = sin θ .  Find the relation between x and y by eliminating θ . 

  15. To find the horizontal range R of a projectile, the equation R = vtcos α is used, where α is the angle between the line of fire and the horizontal, v is the initial velocity of the projectile, and t is the time of flight. It can be shown that t = (2v sin α) / g ,  where g is the acceleration due to gravity. Show that R = (v2 sin 2α) / g .  See Fig. 20.19.

    A projectile is fired at velocity v in the positive direction. The projectile travels at angle alpha for length R along the horizontal.

    Fig. 20.19

  16. In analyzing light reflection from a cylinder onto a flat surface, the expression 3 cos θ − cos 3θ arises. Show that this equals 2 cos θ cos 2θ + 4 sin θ sin 2θ . 

  17. The instantaneous electric power p in an inductor is given by the equation p = vi sin ωt sin(ωt  − π / 2) .  Show that this equation can be written as p =  − 12vi sin 2ωt . 

  18. In the study of the stress at a point in a bar, the equation s = acos2 θ + bsin2 θ − 2tsin θ cos θ arises. Show that this equation can be written as s = 12(a + b) + 12 (a − b) cos 2θ − tsin 2θ . 

Answers to Practice Exercises

  1. cos 90 °  = cos2 45 °  − sin2 45 °  = (122)2 − (122)2 = 0

  2. tan 2x

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.133.141.6