20.4 Half-Angle Formulas

  • Formula for sin(α  / 2) • Formula for cos(α / 2)

If we let θ = α / 2 in the identity cos 2θ = 1 − 2 sin2 θ and then solve for sin(α / 2) , 

sinα2 =  ± 1 − cos α2
(20.26)

Also, with the same substitution in the identity cos 2θ = 2 cos2 θ − 1 ,  which is then solved for cos(α / 2) ,  we have

cosα2 =  ± 1 + cos α2
(20.27)

CAUTION

In each of Eqs. (20.26) and (20.27), the sign chosen depends on the quadrant in which α2 lies.

EXAMPLE 1 Evaluation using cos(α / 2) formula

We can find cos 165 °  by using the relation

cos 165 °  =  − 1 + cos 330 ° 2using Eq.  ( 20.27)  =  − 1 + 0.86602 =  − 0.9659

Here, the minus sign is used, since 165 °  is in the second quadrant, and the cosine of a second-quadrant angle is negative.

EXAMPLE 2 Evaluation using sin(α / 2) formula

Simplify 1 − cos 114 ° 2 by expressing the result in terms of one-half the given angle. Then, using a calculator, show that the values are equal.

We note that the given expression fits the form of the right side of Eq. (20.26), which means that

1 − cos 114 ° 2 = sin12 (114 ° ) = sin 57 ° 

Using a calculator shows that

1 − cos 114 ° 2 = 0.8386705679andsin 57 °  = 0.8386705679

which verifies the equation for these values.

EXAMPLE 3 Simplification using cos(α / 2) formula

Simplify the expression 9 + 9 cos 6x2 . 

9 + 9 cos 6x2 = 9(1 + cos 6x)2 = 31 + cos 6x2 = 3 cos12 (6x)using Eq.  ( 20.27)  with α= 6x = 3 cos 3x

Noting the original expression, we see that cos 3x cannot be negative.

EXAMPLE 4 Trig identity with sin(α / 2)—kinetic theory of gases

In the kinetic theory of gases, the expression (1 − cos α)2 + sin2 α is found. Show that this expression equals 2 sin12α : 

(1 − cos α)2 + sin2 α = 1 − 2 cos α + cos2 α + sin2 αexpanding = 1 − 2 cos α + 1using Eq.  ( 20.26)  = 2 − 2 cos α = 2(1 − cos α)factoring

This last expression is very similar to that for sin12α ,  except that no 2 appears in the denominator. Therefore, multiplying the numerator and the denominator under the radical by 2 leads to the solution:

2(1 − cos α) = 4(1 − cos α)2 = 21 − cos α2 = 2 sin12αusing Eq.  ( 20.26) 

Noting the original expression, we see that sin12α cannot be negative.

EXAMPLE 5 Evaluation using cos(α / 2)  formula

Given that tan α = 815 (180 °  < α < 270 ° ) ,  find cos(α2) . 

Knowing that tan α = 815 for a third-quadrant angle, we determine from Fig. 20.20 that cos α =  − 1517 .  This means

The terminal side of a position angle passes through (negative 15, negative 8) with length r = 17, and at counterclockwise angle alpha in quadrant 3.

Fig. 20.20

cosα2 =  − 1 + ( − 15/17)2 =  − 234using Eq.  ( 20.27)  =  − 11717 =  − 0.2425

Because 180 °  < α < 270 °  ,  we know that 90 °  < α2 < 135 °  and therefore α2 is in the second quadrant. Because the cosine is negative for second-quadrant angles, we use the negative value of the radical.

EXAMPLE 6 Simplification—calculator verification

Show that 2 cos2x2 − cos x = 1 . 

The first step is to substitute for cosx2 ,  which will result in each term on the left being in terms of x and no x2 terms will exist. This might allow us to combine terms. So we perform this operation, and we have for the left side

2 cos2x2 − cos x = 2(1 + cos x2) − cos xusing Eq.  ( 20.27)  withboth sides squared = 1 + cos x  − cos x = 1

From Fig. 20.21, we verify that the graph of y1 = 2[ cos(x  / 2)] 2 − cos x is the same as the graph of y2 = 1 . 

A horizontal line passes through (0, 1). Part of the line is red and part is blue.

Fig. 20.21

EXAMPLE 7 Formulas for other functions of α / 2

We can find relations for other functions of α2 by expressing these functions in terms of sin(α2) and cos(α2) .  For example,

secα2 = 1cosα2 =  ± 11 + cos α2using Eq.  ( 20.27)  =  ± 21 + cos α

EXERCISES 20.4

In Exercises 1 and 2, make the given changes in the indicated examples of this section and then solve the given problem.

  1. In Example 2, change the  −  sign in the numerator to  +  . 

  2. In Example 5, change 815 (180 °  < α < 270 ° ) to  − 815 (270 °  < α < 360 ° ) . 

In Exercises 38, use the half-angle formulas to evaluate the given functions.

  1. cos 15°

  2. sin 22.5°

  3. sin 105°

  4. cos 112.5°

  5. cos3π8

  6. sin11π12

In Exercises 912, simplify the given expressions by giving the results in terms of one-half the given angle. Then use a calculator to verify the result.

  1. 1 − cos 236 ° 2

  2. 1 + cos 98 ° 2

  3. 1 + cos 96 ° 2

  4. 1 − cos 328 ° 2

In Exercises 1320, simplify the given expressions.

  1. 1 − cos 8x2

  2. 4 + 4 cos 8β8

  3. 1 + cos 6x2

  4. 2 − 2 cos 64x

  5. 4 − 4 cos 10θ

  6. 18 + 18 cos 1.4x

  7. 2 sin2x2 + cos x

  8. 2 cos2θ2sec θ

In Exercises 2124, evaluate the indicated functions.

  1. Find the value of sin(α2) if cos α = 1213(0 °  < α < 90 ° ) . 

  2. Find the value of cos(α2) if sin α =  − 45 (180 °  < α < 270 ° ) . 

  3. Find the value of cos(α2) if tan α =  − 0.2917(90 °  < α < 180 ° ) . 

  4. Find the value of sin(α2) if cos α = 0.4706(270 °  < α < 360 ° ) . 

In Exercises 2528, derive the required expressions.

  1. Derive an expression for csc(α2) in terms of sec α

  2. Derive an expression for sec(α2) in terms of sec α . 

  3. Derive an expression for tan(α2) in terms of sin α and cos α . 

  4. Derive an expression for cot(α2) in terms of sin α and cos α . 

In Exercises 2932, prove the given identities.

  1. sinα2 = 1 − cos α2 sinα2

  2. cosθ2 = sin θ2 sinθ2

  3. 2 cosx2 = (1 + cos x) secx2

  4. cos2x2  [ 1 + (sin x1 + cos x)2 ]  = 1

In Exercises 3336, verify each identity by comparing the graph of the left side with the graph of the right side on a calculator.

  1. 2 sin2α2  −  cos2α2 =  1  −  3 cos α2

  2. cos2A2 − sin2A2 = sin 2A2 sin A

  3. 2 sin2θ2 = sin2 θ1 + cos θ

  4. tanα2 = sin α1 + cos α

In Exercises 3748, use the half-angle formulas to solve the given problems.

  1. Find tan θ if sin(θ / 2) = 3/5 . 

  2. In a right triangle with sides and angles as shown in Fig. 20.22, show that sin2A2 = c − b2c . 

    A right triangle with leg ay, leg b, and hypotenuse c. Opposite leg ay is angle Ay.

    Fig. 20.22

  3. Find the exact value of tan 22.5 °  using half-angle formulas.

  4. If 180 °  < θ < 270 °  and tan (θ / 2) =  − π / 3 ,  find sin θ . 

  5. If 90 °  < θ < 180 °  and sin θ = 4/5 ,  find cos(θ / 2) . 

  6. Find the area of the segment of the circle in Fig. 20.23, expressing the result in terms of θ / 2 . 

    A circle with radius r and central angle theta. A chord connects the ends of the central angle, and the segment between it and the arc is shaded.

    Fig. 20.23

  7. In finding the path of a sliding particle, the expression 8 − 8 cos θ is used. Simplify this expression.

  8. In designing track for a railway system, the equation d = 4rsin2A2 is used. Solve for d in terms of cos A.

  9. In electronics, in order to find the root-mean-square current in a circuit, it is necessary to express sin2 ωt in terms of cos 2ωt .  Show how this is done.

  10. In studying interference patterns of radio signals, the expression 2E2 − 2E2cos(π − θ) arises. Show that this can be written as 4E2cos2(θ / 2) . 

  11. The index of refraction n, the angle A of a prism, and the minimum angle of deflection ϕ are related by n = sin12(A + ϕ)sin12A . 

    See Fig. 20.24. Show that an equivalent expression is n = 1 − cos A cos ϕ + sin A sin ϕ1 − cos A

    A prism with angle Ay. A light ray passes through the prism opposite angle Ay, refracting at angle phi so that it exits at a different angle than it entered.

    Fig. 20.24

  12. For the structure shown in Fig. 20.25, show that x = 2lsin212θ . 

    A triangle with two sides measuring l and angle theta between them. An altitude opposite theta creates segment x on one of the sides of l.

    Fig. 20.25

Answers to Practice Exercises

  1. 5 sin 2x

  2.  ± 21 − cos x

..................Content has been hidden....................

You can't read the all page of ebook, please click here login for view all page.
Reset
3.147.61.142